DOI QR코드

DOI QR Code

Reliability Optimization Technique for High-Density 3D NAND Flash Memory Using Asymmetric BER Distribution

에러 분포의 비대칭성을 활용한 대용량 3D NAND 플래시 메모리의 신뢰성 최적화 기법

  • Received : 2022.09.15
  • Accepted : 2022.10.22
  • Published : 2023.02.28

Abstract

Recent advances in flash technologies, such as 3D processing and multileveling schemes, have successfully increased the flash capacity. Unfortunately, these technology advances significantly degrade flash's reliability due to a smaller cell geometry and a finer-grained cell state control. In this paper, we propose an asymmetric BER-aware reliability optimization technique (aBARO), new flash optimization that improves the flash reliability. To this end, we first reveal that bit errors of 3D NAND flash memory are highly skewed among flash cell states. The proposed aBARO exploits the unique per-state error model in flash cell states by selecting the most error-prone flash states and by forming narrow threshold voltage distributions (for the selected states only). Furthermore, aBARO is applied only when the program time (tPROG) gets shorter when a flash cell becomes aging, thereby keeping the program latency of storage systems unchanged. Our experimental results with real 3D MLC and TLC flash devices show that aBARO can effectively improve flash reliability by mitigating a significant number of bit errors. In addition, aBARO can also reduce the read latency by 40%, on average, by suppressing the read retries.

Keywords

Acknowledgement

본 논문은 2022년도 정부 (교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임 (No. 2022R1I1A3073170).

References

  1. Y. Park, J. Lee, S. S. Cho, G. Jin, E. Jung, "Scaling and Reliability of NAND Flash Devices," in Proc. of IEEE Int. Reliability Physics Symposium (IRPS), pp. 2E.1.1-2E.1.4, 2014.
  2. Y. J. Woo, J. S. Kim, "Diversifying wear Index for MLC NAND Flash Memory to Extend the Lifetime of SSDs," in Proc. of IEEE Int. Conf. on Embedded Software (EMSOFT), pp. 1-10, 2013.
  3. A. Chen, "Flash Type Comparison for SLC/MLC/TLC and Advantech's Ultra MLC Technology," Technical White Paper, 2016.
  4. J. Maserjian, N. Zamani, "Behavior of the Si/SiO2 Interface Observed by Fowler-Nordheim Tunneling," Journal of Applied Physics, Vol. 53, No. 1, pp. 559-567, 1982. https://doi.org/10.1063/1.329919
  5. R. Micheloni, L. Crippa, A. Marelli, "Inside NAND Flash Memories," Springer, 2010.
  6. O. Hambrey, "NAND Flash Basics & Error Characteristics," Flash Memory Summit, 2019.
  7. E. Rosenbaum, L. F. Register, "Mechanism of Stress-induced Leakage Current in MOS Aapacitors," IEEE Transactions on Electron Devices, Vol. 44, No. 2, pp. 317-323, 1997. https://doi.org/10.1109/16.557724
  8. Y. Cai, Y. Yu, E. F. Haratsch, K. Mai, O. Mutlu, "Data Retention in MLC NAND Flash Memory: Characterization, Optimization, and Recovery," in Proc. of IEEE Int. Symposium on High Performance Computer Architecture (HPCA), pp. 551-563, 2015.
  9. K. D. Suh, B. H. Suh, Y. H. Lim, J. K. Kim, Y. J. Choi, Y. N. Koh, S. S. Lee, S. C. Kwon, B. S. Choi, J. S. Yum, J. H. Choi, J. R. Kim, H. K. Lim, "A 3.3 V 32 Mb NAND Flash Memory with Incremental Step Pulse Programming Scheme," IEEE Journal of Solid-State Circuits, Vol. 30, No. 11, pp. 1149-1156, 1995. https://doi.org/10.1109/4.475701
  10. R. S. Liu, C. L. Yan, W. Wu, "Optimizing NAND Flash-based SSDs via Retention Relaxation," in Proc. of USENIX Conf. on File and Storage Technologies (FAST), pp. 1-11, 2012.
  11. S. K. Park, "Technology Scaling Challenge and Future Prospects of DRAM and NAND Flash Memory," IEEE International Memory Workshop (IMW), pp. 1-4, 2015.
  12. N. Robson, J. Safran, C. Kothandaraman, A. Cestero, X. Chen, R. Rajeevakumar, A. Lselie, C Moy, T. Kirihata, S. Iyer, "Electrically Programmable Fuse (eFuse): From Memory Redundancy to Autonomic Chips," IEEE Custom Integrated Circuits Conference(CICC), pp. 799-804, 2007.
  13. Open NAND Interface Specification, 2020, http://www.onfi.org/specifications.
  14. S. Arrhenius, "Uber die Dissociationswarme Und den Einfluss der Temperatur auf den Dissociationsgrad der Elektrolyte," Z. Phys. Chemie, Vol. 4, No. 1, pp. 96-116, 1889. https://doi.org/10.1515/zpch-1889-0408
  15. JEDEC, Stress-test-driven Qualification of Integrated Circuits (JEDEC jesd47), https://www.jedec.org, 2010.
  16. M. Favalli, C. Zambelli, A. Marelli, R. Micheloni, P. Olivo, "A Scalable Bidimensional Randomization Scheme for TLC 3D NAND Flash Memories," Micromachines, Vol. 12, No. 7, pp. 2021.