• 제목/요약/키워드: Average heat transfer coefficient

검색결과 179건 처리시간 0.024초

월동시 양식장의 연료 절감 대책 (A study on the reduction of fuel consumption for fish farm during winter season)

  • 박종운;한규일
    • 수산해양교육연구
    • /
    • 제7권1호
    • /
    • pp.31-43
    • /
    • 1995
  • For the fuel saving in the fish farm, the heat transfer performances of various tubes, XL-tube, copper-tube, copper-Nikel-tube and Al-brass-tube, were compared. The XL-tube, which is most commonly used for heating water, showed the poorest heater transfer performance, while the Al-Brass tube shows the best performance. As far as average temperature difference of four tubes concerns, XL-tube is $3.34^{\circ}C$, Copper tube is $10.34^{\circ}C$, Copper-Nikel tube is $11.3^{\circ}C$, Al-Brass-tube is $12^{\circ}C$, The best heat transfer performance of Al-Brass tube results from the enhancement of heat transfer coefficient caused by fin effect and good conductivity of the material.

  • PDF

Pool boiling heat transfer of a copper microporous coating in borated water

  • Jun, Seongchul;Godinez, Juan C.;You, Seung M.;Kim, Hwan Yeol
    • Nuclear Engineering and Technology
    • /
    • 제52권9호
    • /
    • pp.1939-1944
    • /
    • 2020
  • Pool boiling heat transfer of a copper microporous coating was experimentally studied in borated water with a concentration of boric acid from 0.0 to 5.0 vol percent (vol%) to determine the effect of boric acid on boiling heat transfer in water. A high-temperature, thermally conductive microporous coating (HTCMC) was created by sintering copper powder with an average particle size of 67 ㎛ onto a 1 cm × 1 cm plain copper surface with a coating thickness of ~300 ㎛ within a furnace in a vacuum environment. The tests showed that the nucleate boiling heat transfer coefficient (NBHT) of HTCMC became slightly less enhanced as the concentration of boric acid increased but the NBHT coefficient values were still significantly higher than those of the plain surface. The critical heat flux (CHF) values from 0 to 1.0 vol% were maintained at ~2,000 kW/㎡, and then, they gradually decreased down to ~1,700 kW/㎡ as the concentration increased further to 5.0 vol%. It is believed that the micro-scale pores of the HTCMC were partially blocked by the high boric acid concentration during the nucleate boiling such that the small bubbles were not effectively created using the HTCMC reentrant cavities as the boric acid concentration increased.

피형면에 충돌하는 2차원 분류와 전달특성 및 유동구조 - 충돌 분류의 전열특성 - (Heat Transfer Enhancement and the Flow Structure of a Two-Dimensional Jet Impinging on Wavy Wall)

  • 최국광;차지영
    • 대한기계학회논문집
    • /
    • 제10권1호
    • /
    • pp.96-101
    • /
    • 1986
  • 본 연구에서는 2차원 충돌분류에 있어서 전열면상에 비교적 큰 스케일을 가진 트랜스버스 리브(transverserib)형의 피형돌기를 만들고 충돌영역을 포함하여 통상열전달율이 현저하게 낮아지는 하류역까지의 넓은 영역에 걸쳐 전달회진을 목적 으로 전달특성을 실험적으로 조사하고 전보에서 다룬 거형의 트랜스버스 리브를 갖는 전열면에서의 결과와 비교 검토하였다. 한편 돌기면상의 유동형태의 상세를 smoke wire법에 의해 충돌분류 특유의 종과류와 그 신장에 대하여 조사하고 표면부유법 (surface floating method)에 의해 비교적 큰 스케일의 돌기에 따른 흐름의 박이 및 재부착에 관해서 조사하여 이들과 전열기구와의 관계를 정성적으로 검토하였다.

An Analytic Study on Laminar Film Condensation along the Interior Surface of a Cave-Shaped Cavity of a Flat Plate Heat Pipe

  • Lee, Jin-Sung;Kim, Tae-Gyu;Park, Tae-Sang;Kim, Choong-Sik
    • Journal of Mechanical Science and Technology
    • /
    • 제16권7호
    • /
    • pp.966-974
    • /
    • 2002
  • An analytic approach has been employed to study condensate film thickness distribution inside cave-shaped cavity of a flat plate heat pipe. The results indicate that the condensate film thickness largely depends on mass flow rate and local velocity of condensate. The increasing rate of condensate film for circular region reveals about 50% higher value than that of vertical region. The physical properties of working fluid affect significantly the condensate film thickness, such as the condensate film thickness for the case of FC-40 are 5 times larger than that of water. In comparison with condensation on a vertical wall, the average heat transfer coefficient in the cave-shaped cavity presented 10∼15% lower values due to the fact that the average film thickness formed inside the cave-shaped cavity was larger than that of the vertical wall with an equivalent flow length. A correlation formula which is based on the condensate film analysis for the cave-shaped cavity to predict average heat transfer coefficient is presented. Also, the critical minimum fill charge ratio of working fluid based on condensate film analysis has been predicted, and the minimum fill charge ratios for FC-40 and water are about Ψ$\_$crit/=3∼7%, Ψ$\_$crit/=0.5∼1.3% respectively, in the range of heat flux q"=5∼90kW/㎡.

고온 원관형 히트파이프의 열전달 특성에 관한 실험 연구 (An Experimental Study on the Heat Transfer Characteristics of High-Temperature Cylindrical Heat Pipes)

  • 박수용;부준홍
    • 설비공학논문집
    • /
    • 제16권1호
    • /
    • pp.70-76
    • /
    • 2004
  • High-temperature cylindrical sodium/stainless-steel heat pipes were manufactured and tested for transient as well as steady states. Total length of the heat pipe was 1 m and the diameter was 25.4 mm. Screen meshes of 3 different sizes were used to estimate the effect of mesh size on the thermal performance of the heat pipe. The minimum thermal resistance achieved was as low as 0.02$^{\circ}C$/W for the maximum thormal load of 2 ㎾. The average heat transfer coefficient in the evaporator was about 2,000 ㎾/$m^2$K and those in the condenser region were up to 5 times higher.

사각수분류에 의한 평판상에서의 대류열전달 특성 (Convective Heat Transfer Characteristics on a Plate Cooled by Rectangular Water Jets)

  • 김은영;전성택;박종순;이덕봉
    • 태양에너지
    • /
    • 제15권1호
    • /
    • pp.53-71
    • /
    • 1995
  • 형상비가 다른 3개의 사각노즐을 이용한 충돌 수분류가 등열유속 조건($q=10^5W/m^2$)으로 가열된 수평 평판에 충돌하였을 때, 형상비(AR=6.67, 15, 26.67)와 노즐의 출구 유속($V_0=3.3m/s{\sim}78m/s$) 및 노즐과 전열면과의 무차원거리($Z/W=6{\sim}40$)에 따른 열전달 특성을 규명하기 위한 실험을 하였다. 원형 수분류에서 나타난 제2의 열전달 극대치(scondary peaks)가 사각 수분류에서도 나타나고 있으며 그 위치가 형상비에 따라 변한다. 정체점의 열전달계수도 형상비의 영향을 받고 있으며, 정체점 열전달 게수가 가장 좋은 노즐의 최적위치와 정체점 열전달 무차원 관계식을 제시하였다.

  • PDF

관류형 아임계압 배열회수보일러의 열성능 모델링과 검증 (Modelling and Verification of Once-Through Subcritical Heat Recovery Steam Generator)

  • 이채수;최영준;김현기;양옥철;정재헌
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1692-1697
    • /
    • 2004
  • The once-through heat recovery steam generator is ideally matched to very high temperature and pressure, well into the supercritical range. Moreover this type of boiler is structurally simpler than drum type boiler. In drum type boiler, each tube play a well-defined role: water preheating, vaporization, superheating. Empirical equations are available to predict the average heat transfer coefficient for each regime. For once-through heat recovery steam generator, this is no more the case and mathematical models have to be adapted to account for the disappearance of drum type economizer, boiler, superheater. General equations have to be used for each tube of boiler, and actual heat transfer condition in each tube has to be identified.

  • PDF

마이크로핀관에서의 냉매 R-22, R-407C의 응축전열특성에 관한 연구 (Condensation heat transfer characteristics of R-22 and R-407C in micro-fin tubes)

  • 노건상
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권1호
    • /
    • pp.50-56
    • /
    • 2008
  • Experimental results for forced convection condensation of Refrigerant-22 and ternary Refrigerant-407C(HFC-32/125/134a 23/25/52 wt%) which is being considered as a substitute R-22 inside a horizontal micro-fin tube are presented. The test section was horizontal double-tube counterflow condenser with a length 4,000 mm micro-fin tube, having 8.53 mm ID, 0.2 mm fin height and 60 fins. The range of parameters of mass velocity were varied from 102.1 to 301.0 kg/(m2.s) and inlet quality 1.0. At the given experimental conditions. the average heat transfer coefficients for R-407C were lower than that for R-22 at a micro-fin tube. Over the mass velocity range tested. the PF(penalty factor) for R-22, R-407C were lower than the increasing ratio of heat transfer area by fins, and the EF(enhancement factor) for R-22, R-407C were higher than the increasing ratio of heat transfer area by fins.

Temperature Dependent Behavior of Thermal and Electrical Contacts during Resistance Spot Welding

  • Kim, E.
    • International Journal of Korean Welding Society
    • /
    • 제2권1호
    • /
    • pp.1-10
    • /
    • 2002
  • The thermal contact conductance at different temperatures and with different electrode forces and zinc coating morphology was measured by monitoring the infrared emissions from the one dimensionally simulated contact heat transfer experiments. The contact heat transfer coefficients were presented as a function of the harmonic mean temperature of the two contacting surfaces. Using these contact heat transfer coefficients and experimentally measured temperature profiles, the electrical contact resistivities both for the faying interface and electrode-workpiece interface were deduced from the numerical analyses of the one dimension simulation welding. It was found that the average value of the contact heat transfer coefficients for the material with zinc coating (coating weight from 0 g/$mm^2$to 100 g/$mm^2$) ranges from 0.05 W/$mm^2$$^{\circ}C$ to 2.0 W/$mm^2$$^{\circ}C$ in the temperature range above 5$0^{\circ}C$ harmonic mean temperature of the two contacting surfaces. The electrical contact resistivity deduced from the one dimension simulation welding and numerical analyses showed that the ratio of electrical contact resistivity at the laying interface to the electrical contact resistivity at the electrode interface is smaller than one far both bare steel and zinc coated steel.

  • PDF

U-밴드 관 내부 나노유체의 강제대류에 관한 수치적 연구 (Numerical Study of Forced Convection Nanofluid in a U-Bend Tube)

  • 조성원;최훈기;박용갑
    • 융합정보논문지
    • /
    • 제12권3호
    • /
    • pp.141-150
    • /
    • 2022
  • 원형단면 U-밴드 튜브에서 층류인 나노유체(물/Al2O3)의 유동 및 열적 특성을 수치적으로 연구하였다. 이 연구에서는 U-밴드 내부유동에서 Reynolds 수와 고체 체적분율의 영향이 유동장, 열전달 및 압력강하에 미치는 영향을 연구했다. 원형곡관에 대한 이전에 발표된 실험 결과와 본 수치해석의 결과가 잘 일치함을 보여 해석방법의 타당성이 있음을 확인하였다. Reynolds 수 뿐만 아니라 나노입자의 고체 체적분율을 증가시키면 열전달계수도 증가함을 보였다. 또한 곡관에서 형성되는 2차 유동은 평균 열전달계수를 높이는 데 중요한 역할을 한다. 그러나 압력강하 곡선은 나노입자 농도가 증가함에 따라 크게 증가함을 보였다.