• Title/Summary/Keyword: Available reactive current

Search Result 13, Processing Time 0.02 seconds

Voltage Control for a Wind Power Plant Based on the Available Reactive Current of a DFIG and Its Impacts on the Point of Interconnection (이중여자 유도형 풍력발전기 기반 풍력단지의 계통 연계점 전압제어)

  • Usman, Yasir;Kim, Jinho;Muljadi, Eduard;Kang, Yong Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.1
    • /
    • pp.23-30
    • /
    • 2016
  • Wake effects cause wind turbine generators (WTGs) within a wind power plant (WPP) to produce different levels of active power and subsequent reactive power capabilities. Further, the impedance between a WTG and the point of interconnection (POI)-which depends on the distance between them-impacts the WPP's reactive power injection capability at the POI. This paper proposes a voltage control scheme for a WPP based on the available reactive current of the doubly-fed induction generators (DFIGs) and its impacts on the POI to improve the reactive power injection capability of the WPP. In this paper, a design strategy for modifying the gain of DFIG controller is suggested and the comprehensive properties of these control gains are investigated. In the proposed scheme, the WPP controller, which operates in a voltage control mode, sends the command signal to the DFIGs based on the voltage difference at the POI. The DFIG controllers, which operate in a voltage control mode, employ a proportional controller with a limiter. The gain of the proportional controller is adjusted depending on the available reactive current of the DFIG and the series impedance between the DFIG and the POI. The performance of the proposed scheme is validated for various disturbances such as a reactive load connection and grid fault using an EMTP-RV simulator. Simulation results demonstrate that the proposed scheme promptly recovers the POI voltage by injecting more reactive power after a disturbance than the conventional scheme.

Hierarchical Voltage Regulation of a DFIG-based Wind Power Plant Using a Reactive Current Injection Loop with the Maximum Voltage Dip for a Grid Fault (최대 전압 강하에 비례하는 무효전류 공급 루프를 이용한 DFIG 풍력단지의 계층전압제어)

  • Park, Geon;Kim, Jinho;Kang, Yong Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.8
    • /
    • pp.1334-1339
    • /
    • 2016
  • In a power grid that has a high wind power penetration, the fast voltage support of a wind power plant (WPP) during the grid fault is required to stabilize the grid voltage. This paper proposes a voltage control scheme of a doubly-fed induction generator (DFIG)-based WPP that can promptly support the voltage of the point of common coupling (PCC) of a WPP during the grid fault. In the proposed scheme, the WPP and DFIG controllers operate in a voltage control mode. The DFIG controller employs two control loops: a maximum voltage dip-dependent reactive current injection loop and a reactive power to voltage loop. The former injects the reactive power in proportion to the maximum voltage dip; the latter injects the reactive power in proportion to the available reactive power capability of a DFIG. The former improves the performance of the conventional voltage control scheme, which uses the latter only, by increasing the reactive power as a function of the maximum voltage dip. The performance of the proposed scheme was investigated for a 100-MW WPP consisting of 20 units of a 5-MW DFIG under various grid fault scenarios using an EMTP-RV simulator. The simulation results indicate that the proposed scheme promptly supports the PCC voltage during the fault under various fault conditions by increasing the reactive current with the maximum voltage dip.

HIPIMS Arc-Free Reactive Deposition of Non-conductive Films Using the Applied Material ENDURA 200 mm Cluster Tool

  • Chistyakov, Roman
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.96-97
    • /
    • 2012
  • In nitride and oxide film deposition, sputtered metals react with nitrogen or oxygen gas in a vacuum chamber to form metal nitride or oxide films on a substrate. The physical properties of sputtered films (metals, oxides, and nitrides) are strongly influenced by magnetron plasma density during the deposition process. Typical target power densities on the magnetron during the deposition process are ~ (5-30) W/cm2, which gives a relatively low plasma density. The main challenge in reactive sputtering is the ability to generate a stable, arc free discharge at high plasma densities. Arcs occur due to formation of an insulating layer on the target surface caused by the re-deposition effect. One current method of generating an arc free discharge is to use the commercially available Pinnacle Plus+ Pulsed DC plasma generator manufactured by Advanced Energy Inc. This plasma generator uses a positive voltage pulse between negative pulses to attract electrons and discharge the target surface, thus preventing arc formation. However, this method can only generate low density plasma and therefore cannot allow full control of film properties. Also, after long runs ~ (1-3) hours, depends on duty cycle the stability of the reactive process is reduced due to increased probability of arc formation. Between 1995 and 1999, a new way of magnetron sputtering called HIPIMS (highly ionized pulse impulse magnetron sputtering) was developed. The main idea of this approach is to apply short ${\sim}(50-100){\mu}s$ high power pulses with a target power densities during the pulse between ~ (1-3) kW/cm2. These high power pulses generate high-density magnetron plasma that can significantly improve and control film properties. From the beginning, HIPIMS method has been applied to reactive sputtering processes for deposition of conductive and nonconductive films. However, commercially available HIPIMS plasma generators have not been able to create a stable, arc-free discharge in most reactive magnetron sputtering processes. HIPIMS plasma generators have been successfully used in reactive sputtering of nitrides for hard coating applications and for Al2O3 films. But until now there has been no HIPIMS data presented on reactive sputtering in cluster tools for semiconductors and MEMs applications. In this presentation, a new method of generating an arc free discharge for reactive HIPIMS using the new Cyprium plasma generator from Zpulser LLC will be introduced. Data (or evidence) will be presented showing that arc formation in reactive HIPIMS can be controlled without applying a positive voltage pulse between high power pulses. Arc-free reactive HIPIMS processes for sputtering AlN, TiO2, TiN and Si3N4 on the Applied Materials ENDURA 200 mm cluster tool will be presented. A direct comparison of the properties of films sputtered with the Advanced Energy Pinnacle Plus + plasma generator and the Zpulser Cyprium plasma generator will be presented.

  • PDF

Methodology for Determining of Generator Operation Point for Ensuring Voltage Stability Against Generator Faults in Jeju-Haenam HVDC System

  • Kang, Sang-Gyun;Seo, Sang-Soo;Lee, Byong-Jun;Joo, Joon-Young
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.54-60
    • /
    • 2010
  • This paper presents a new algorithm for determining generator operation point for maintaining stability considering generator faults in Jeju-Haenam HVDC system. As the HVDC system consumes reactive power for the transmission of active power substantially, compensation of reactive power is essential. And the HVDC system is operated on frequency control mode. That is to say, the HVDC system almost manages system frequency. Therefore, we recognized that the Jeju system could be unstable if the reactive power consumed by the HVDC is insufficient when out-of-step occurs with large generators. When the solution of power flow analysis does not converge due to the unstable system phenomenon, we have difficulty in establishing countermeasures as the post-fault information is not available. In this paper, for the purpose of overcoming this difficulty in establishing countermeasures, we introduce the CPF(Continuation Power Flow) algorithm. This paper suggests an algorithm for calculating the output limitation of the generator to maintain the stability in case of generator fault in the Jeju system.

Mechanisms of radiation-induced normal tissue toxicity and implications for future clinical trials

  • Kim, Jae Ho;Jenrow, Kenneth A.;Brown, Stephen L.
    • Radiation Oncology Journal
    • /
    • v.32 no.3
    • /
    • pp.103-115
    • /
    • 2014
  • To summarize current knowledge regarding mechanisms of radiation-induced normal tissue injury and medical countermeasures available to reduce its severity. Advances in radiation delivery using megavoltage and intensity-modulated radiation therapy have permitted delivery of higher doses of radiation to well-defined tumor target tissues. Injury to critical normal tissues and organs, however, poses substantial risks in the curative treatment of cancers, especially when radiation is administered in combination with chemotherapy. The principal pathogenesis is initiated by depletion of tissue stem cells and progenitor cells and damage to vascular endothelial microvessels. Emerging concepts of radiation-induced normal tissue toxicity suggest that the recovery and repopulation of stromal stem cells remain chronically impaired by long-lived free radicals, reactive oxygen species, and pro-inflammatory cytokines/chemokines resulting in progressive damage after radiation exposure. Better understanding the mechanisms mediating interactions among excessive generation of reactive oxygen species, production of pro-inflammatory cytokines and activated macrophages, and role of bone marrow-derived progenitor and stem cells may provide novel insight on the pathogenesis of radiation-induced injury of tissues. Further understanding the molecular signaling pathways of cytokines and chemokines would reveal novel targets for protecting or mitigating radiation injury of tissues and organs.

Electromagnetic Transient Program Modeling for Analysis of Switching Over-Voltage on Shunt Reactor (분로리액터 개폐 과전압 해석을 위한 EMTP 모델링)

  • Oh, SeungRyle;Jun, InYoung;Han, KiSun;Kang, JiWon
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.4
    • /
    • pp.393-397
    • /
    • 2020
  • Shunt reactor, a facility for reactive power compensation, is switched several times a day depending on the load pattern. When the circuitbreaker opens the shunt reactor over-voltage is generated by several factors which degrade the insulating performance of internal parts of the circuit-breaker and cause severe voltage stress on the equipment in the power system. Transient phenomenon occurring during the switching of shunt reactor are available in laboratories that verify the performance of the circuit-breaker by simulating the power system. However, it is difficult to measure the transient phenomenon that occurs during actual operation in actual power system due to many limitations. Therefore, this paper deals with the modeling using EMTP to analyze the reignition and current chopping which causes more severe transient recovery voltage in the small inductive current breaking in actual power systems. In addition, this paper analyzes the main phenomenon that cause circuit-breaker failure in opening shunt reactor using EMTP model.

Quantum Mechanical Study of the O(1D) + HCl → OH + Cl Reaction

  • Lin, Shi-Ying;Park, Seung-C.
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.2
    • /
    • pp.229-240
    • /
    • 2002
  • Quantum mechanical calculation is performed for the $O(^1D)$ + HCl ${\rightarrow}$OH + Cl reaction using Reactive Infinite Order Sudden Approximation. Shifting approximation is also employed for the l ${\neq}$ 0 partial wave contributions. Various dynamical quantities are calculated and compared with available experimental results and quasiclassical trajectory results. Vibrational distributions agree well with experimental results i.e. product states mostly populated at $v_f$ = 3, 4. Our results also show small peak at $v_f$ = 0, which indicates bimodal vibrational distribution. The results show two significant broad peaks in ${\gamma}_i$ dependence of the cross section, one is at ${\gamma}_i$ = $15^{\circ}-35^{\circ}$ and the another is at ${\gamma}_i$= $55^{\circ}-75^{\circ}$ which can be explained as steric effects. At smaller gi, the distribution is peaked only at higher state ($v_f$ = 3, 4) while at the larger gi, both lower state ($v_f$ = 0) and higher state ($v_f$ = 3, 4) are significantly populated. Such two competing contributions (smaller and larger ${\gamma}_i$) result in the bimodal distribution. From these points we suggest two mechanisms underlying in current reaction system: one is that reaction occurs in a direct way, while the another is that reaction occurs in a indirect way.

Development of Integrated Start-up and Excitation System for Gas Turbine Synchronous Generator (가스터빈 동기기 통합형 기동 및 여자시스템 개발)

  • Ryu, Hoseon;Cha, Hanju
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.3
    • /
    • pp.183-188
    • /
    • 2014
  • Power conversion systems used in large gas turbine power plant can be divided into two main part. Because of the initial start-up characteristic of the gas turbine combustor, the gas turbine must be accelerated by starting device(LCI : Load Commutated Inverter) up to 10%~20% of rated speed to ignite it. In addition, the ECS(Excitation Control system) is used to control the rotor field current and reactive power in grid-connected synchronous generator. These two large power conversion systems are located in the same space(container) because of coordination control. Recently, many manufactures develop high speed controller based on function block available in the LCI and ECS with the newest power semiconductor. We also developed high speed controller based on function block to be using these two system and it meets the international standard IEC61131 as using real-time OS(VxWorks) and ISaGRAF. In order to install easily these systems at power plant, main controller, special module and IO module are used with high speed communication line other than electric wire line. Before initial product is installed on the site, prototype is produced and tests are conducted for it. The performance results of Integrated controller and application program(SFC, ECS) were described in this paper. The test results will be considered as the important resources for the application in future.

Study on the Electrical Safety Management Method through the Electrical Characteristic Analysis of LED Lamps (LED 램프의 특성 분석을 통한 전기안전 관리 방안에 관한 연구)

  • Lee, Ki-Yeon;Moon, Hyun-Wook;Kim, Dong-Woo;Lim, Young-Bea;Ryu, In-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.11
    • /
    • pp.1931-1936
    • /
    • 2016
  • In this paper, we analyzed causes of accidents that recently increased in the illegal and defective LED lamps. They were analyzed by the electrical characteristics calculation and reappearance experiments. The causes of the accidents were analyzed from the circuit affected by the variation of voltage, current and power by harmonics. We drew a conclusion for electrical safety in illegal or degraded LED lamps from the analysis result. The management factors for electrical safety in LED lamps were harmonics, reactive power and power factor. It is possible to secure the electrical safety through monitoring of power factor in failure products and available in smart meters or smart distribution boards.

A Study on Performance Enhancement of the Rate Scheme for ABR Traffic on ATM Networks (ATM 망에서 ABR 트래픽을 위한 Rate 기법이 성능 향상 연구)

  • Lee, Yo-Seob;Yu, Eun-Jin;Chang, Hyun-Hee;Pang, Hea-Ja;Jun, Moon-Seog
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.10
    • /
    • pp.2605-2614
    • /
    • 1997
  • Recently, we are concerned with effective service according as the demand increase for high speed data service. We can use high speed transfer and multiple traffic service on the ATM networks, so we concentrate on preventive-control method rather than reactive-control one. But it is possible to have low QoS and traffic congestion due to unpredictable traffic and burst traffic. Specially, ATM Forum has discussed to standardization of traffic management of ABR(Available Bit Rate) service. Because ABR traffic controls the flow of traffic using the feedback information and the current status information of cell, it allocates bandwidth systematically and dynamically to the user. In this paper, we propose a new Rate-based flow control scheme which adapted double threshold buffer idea. The double threshold buffer controls the traffic control by establishing two threshold in buffer.

  • PDF