• Title/Summary/Keyword: Auxiliary equipment

Search Result 128, Processing Time 0.032 seconds

Introduction of Off-Gas Power Plant and Localization Development of Auxiliary Equipment (부생복합발전 소개와 주요설비 국산화를 위한 연구)

  • Ko, Minseok;Kim, Dohyung;Lee, Dongsu;Lee, Seong-geun
    • 한국연소학회:학술대회논문집
    • /
    • 2013.06a
    • /
    • pp.127-128
    • /
    • 2013
  • Off-gas power plant is a renewable energy power plant which generate electrical energy using the low calorie FOG and BFG as main fuel. This combined cycle power plant is comprised of gas turbines, gas compressors, steam turbines, generators, and auxiliary equipment such as gas mixer, mixing tank, and gas cooler. In this paper, a off-gas power plant and development of its several equipment using CFD are introduced.

  • PDF

Implementation of Responsive Web-based Vessel Auxiliary Equipment and Pipe Condition Diagnosis Monitoring System (반응형 웹 기반 선박 보조기기 및 배관 상태 진단 모니터링 시스템 구현)

  • Sun-Ho, Park;Woo-Geun, Choi;Kyung-Yeol, Choi;Sang-Hyuk, Kwon
    • Journal of Navigation and Port Research
    • /
    • v.46 no.6
    • /
    • pp.562-569
    • /
    • 2022
  • The alarm monitoring technology applied to existing operating ships manages data items such as temperature and pressure with AMS (Alarm Monitoring System) and provides an alarm to the crew should these sensing data exceed the normal level range. In addition, the maintenance of existing ships follows the Planned Maintenance System (PMS). whereby the sensing data measured from the equipment is monitored and if it surpasses the set range, maintenance is performed through an alarm, or the corresponding part is replaced in advance after being used for a certain period of time regardless of whether the target device has a malfunction or not. To secure the reliability and operational safety of ship engine operation, it is necessary to enable advanced diagnosis and prediction based on real-time condition monitoring data. To do so, comprehensive measurement of actual ship data, creation of a database, and implementation of a condition diagnosis monitoring system for condition-based predictive maintenance of auxiliary equipment and piping must take place. Furthermore, the system should enable management of auxiliary equipment and piping status information based on a responsive web, and be optimized for screen and resolution so that it can be accessed and used by various mobile devices such as smartphones as well as for viewing on a PC on board. This update cost is low, and the management method is easy. In this paper, we propose CBM (Condition Based Management) technology, for autonomous ships. This core technology is used to identify abnormal phenomena through state diagnosis and monitoring of pumps and purifiers among ship auxiliary equipment, and seawater and steam pipes among pipes. It is intended to provide performance diagnosis and failure prediction of ship auxiliary equipment and piping for convergence analysis, and to support preventive maintenance decision-making.

Combined test of Power Supply System for Korean High Speed Train (고속전철용 보조전원장치 시스템 조합시험)

  • Cho, Hyun-Wook;Kim, Yuen-Chung;Kim, Tae-Hwan;Jang, Kyung-Hyun;Kim, Chul-Ho
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.619-625
    • /
    • 2008
  • Electrical Power supply System conditions of korea high speed train consists of main transformer, four AC-DC PWM converter of Auxiliary Block, Battery Charger in Power Car and Trailer Car, Trailer Inverter, Auxiliary inverter. Main transformer, at nominal voltage of 25kv supplied to secondary winding nominal output Voltage 383Vac, The Auxiliary block consists of AC-DC converters for generating 670VDC power, Auxiliary inverters for ventilation and air compressor, Trailer car inverter provide three phase power supplies at 440Vac for air conditioning and heating. The Battery charger Trailer and Power car supplies 72VDC all necessary equipment to energize the trainset equipment and suppy essential control. This Paper introduces the combined test results of the power supply system for korea high speed train. The main purpose of this combined test is to verify the performance of the power supply system that is designed to operate up to full load test.

  • PDF

Optimal Operation Scheduling Using Possibility Fuzzy Theory on Cogeneration Systems Connected with Auxiliary Equipment (각종 보조설비가 연계된 열병합발전시스템에서 가능성 퍼지이론을 적용한 최적운전계획수립)

  • Kim, Sung-Il;Jung, Chang-Ho;Lee, Jong-Beon
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.128-130
    • /
    • 1995
  • This paper presents the optimal operation scheduling on cogeneration systems connected with auxiliary equipment by using the possibility fuzzy theory. The probability fuzzy theory is a method to obtain the possibility of the solution from the fuzzification of coefficients. Simulation is carried out to obtain the boundary of heat production in each time interval. Simulation results shows effectively the flexible operation boundary to establish operation scheduling.

  • PDF

Safety assessment of Generation III nuclear power plant buildings subjected to commercial aircraft crash Part II: Structural damage and vibrations

  • Qu, Y.G.;Wu, H.;Xu, Z.Y.;Liu, X.;Dong, Z.F.;Fang, Q.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.397-416
    • /
    • 2020
  • Investigations of the commercial aircraft impact effect on nuclear island infrastructures have been drawing extensive attention, and this paper aims to perform the safety assessment of Generation III nuclear power plant (NPP) buildings subjected to typical commercial aircrafts crash. At present Part II, based on the verified finite element (FE) models of aircrafts Airbus A320 and A380, as well as the NPP containment and auxiliary buildings in Part I of this paper, the whole collision process is reproduced numerically by adopting the coupled missile-target interaction approach with the finite element code LS-DYNA. The impact induced damage of NPP plant under four impact locations of containment (cylinder, air intake, conical roof and PCS water tank) and two impact locations of auxiliary buildings (exterior wall and roof of spent fuel pool room) are evaluated. Furthermore, by considering the inner structures in the containment and raft foundation of NPP, the structural vibration analyses are conducted under two impact locations (middle height of cylinder, main control room in the auxiliary buildings). It indicates that, within the discussed scenarios, NPP structures can withstand the impact of both two aircrafts, while the functionality of internal equipment on higher floors will be affected to some extent under impact induced vibrations, and A380 aircraft will cause more serious structural damage and vibrations than A320 aircraft. The present work can provide helpful references to assess the safety of the structures and inner equipment of NPP plant under commercial aircraft impact.

A Study on Characteristic Analysis of Auxiliary Power Supply for Railway Vehicle (철도차량 보조전원장치 특성 분석에 관한 연구)

  • Han, Young-Jae;Han, Seong-Ho;Lee, Tae-Young;Lee, Su-Gil;Lee, Young-Ho
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.4
    • /
    • pp.177-181
    • /
    • 2017
  • Auxiliary power supply for railway vehicle is a equipment that focuses on the service of passengers in a vehicle. It supplies power to controllers used in heating and cooling devices, fluorescent lamps, batteries and many other electrical equipments. Most of the auxiliary power supply for railway vehicle are mainly used for the round trips and circulation routes within the metropolitan area and have a capacity of 170~200 kVA. In this study, we developed the auxiliary power supply capacity to 240kVA for 200km/h class. As such, the auxiliary power supply is an important device for securing the reliability and safety of the railway vehicle and improving the passenger convenience, so the performance verification of the performance must be ensured. In this paper, 240kVA auxiliary power supply is developed. Also, performance of the auxiliary power supply manufactured through the analysis of various characteristics related to the auxiliary power supply was confirmed while operating the actual line.

Development of Auxiliary Heater to Improve Korean Medical Evacuation Helicopter Winter Operational Capability

  • Kim, Se Un;Koo, Jeong Mo;Seo, Jeong Mi;Jeong, Won Chae
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.6
    • /
    • pp.10-17
    • /
    • 2020
  • The Korean medical evacuation helicopter was developed based on the Korean Utility Helicopter (hereafter referred to as 'Surion'). It uses an auxiliary power unit and engine for heating during winter operation. The helicopter maintains the internal temperature of the aircraft using its bleed air to satisfy its operational capability. However, due to the air inflow through the gap between the aircraft skin and door, additional heating for operating the portable medical equipment and preventing hypothermia in evacuated patients is required. Accordingly, an electric auxiliary heater was developed for additional heating during winter operation, and environmental, durability, and performance tests were conducted per MIL-STD-810G and MIL-STD-461F. The auxiliary heater was verified per the tailored airworthiness certification criteria.

The Study on Miniaturization and Weight Reduction of Auxiliary Power Unit in Magnetic Levitation Train

  • Lee, Na Ri;Shin, Hee Keun;Choi, Sung Ho;Kim, Ju Bum;Lim, Jae Won;Park, Doh Young;Mok, Hyung Soo
    • International Journal of Railway
    • /
    • v.8 no.1
    • /
    • pp.10-14
    • /
    • 2015
  • Due to the characteristics of the vehicle structure, the magnetic levitation train has a confined bottom space thus a study on miniaturization and weight reduction of auxiliary power unit is essential. This auxiliary power unit is an essential device used for illumination, air conditioning, heating and air brake equipment excluding the motor. The previous auxiliary power unit for magnetic levitation train has used the hard switching having a high switching frequency with heavy loss in order to reduce the size of filter reactor and transformer but the reduction in volume was not significant. In this paper, by reducing the loss, reducing the size of the cooling unit and by increasing the switching frequency using the soft switching of resonant converter, it has miniaturized and reduced the weight of filter reactor and transformer which occupy significant space in the auxiliary power unit. This study has verified the performance of 50KVA grade prototype through simulated interpretation and analysis, and compared the size and weight of auxiliary power unit of the previous magnetic levitation train.

A Study on Noise Reduction for Auxiliary Power Supply of railway Vehicle Using IGBT (IGBT를 이용한 전동차용 보조전원장치의 소음 저감에 관한 연구)

  • 노애숙;김주범;배기훈;최종묵
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.280-286
    • /
    • 1998
  • In recent years, the interest in noise increases gradually and the low noise level becomes one of the important performances in electrical equipment for railway vehicle. In the auxiliary power supply, most of the noise is made by the current ripple of alternating current reactor(ACL) which filters the output voltage. And this current ripple results from the voltage harmonics across the ACL. So the noise can be reduced by eliminating the voltage harmonics across the ACL. This paper shows harmonic eliminating technique which is making gating signals of upper and lower inverter have a phase difference in the 12-step inverter type auxiliary power supply. This technique was proved by testing on the developed 180KVA auxiliary power supply using IGBT.

  • PDF

A characteristic test of Auxiliary power supply for High Speed Rolling stock 350 experimental (HSR-350x) (한국형고속열차 보조전원장치 특성시험)

  • Jeong, Sang-Hun;Kim, Dong-Hwan;Lee, Byung-Song;Lee, Tae-Hyung
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.185-191
    • /
    • 2006
  • Auxiliary power supply developed by domestic technology has very important function that not only effect on main power converter & inverter system, traction motor and train control system which are related to performance of train, but also influence on power supply for HVAC(Heat, Ventilation, Air-conditioning) and lighting device which are related to comfort of passengers. This paper shows characteristic test results of auxiliary power supply such as working condition and performance, which is associated with velocity of train, operating mode and surrounding equipment, through test running. Also it shows the results deduced from comparison analysis between designed data and manufactory test data as measuring in put voltage of auxiliary power supply. And, it propose a modification of design parameter for stabilizing operation and improving reliability.

  • PDF