In this paper. we propose a prewhitening method for the km reverberation to enhance the target signal. The proposed algorithm uses the dechirping method which inversely compensates the frequency chirp rate of LFM and transforms the LFM reverberation to have stationary frequency property in each data block. Also, using the left and right adjacent beam signals as reference signals. we model frequency response of each data block by AR coefficients. From these coefficients, we implement inverse filter and prewhiten the LFM reverberation of the center beam efficiently.
Proceedings of the Korean Society of Machine Tool Engineers Conference
/
1996.03a
/
pp.24-29
/
1996
The seniconductor, which is precision product, requires many inspection processes. The surface conditions of the semiconductor chip effect on the functions of the semiconductors. The defects of the chip surface is crack or void. Because general inspection method requires many inspection processes, the inspection system which searches immediately and preciselythe defects of the semiconductor chip surface. We propose the inspection method by using the computer vision system. This study presents an image processing algorithm for inspecting the surface defects(crack, void)of the semiconductor test samples. The proposed image processing algorithm aims to reduce inspection time, and to analyze those experienced operator. This paper regards the chip surface as random texture, and deals with the image modeling of randon texture image for searching the surface defects. For texture modeling, we consider the relation of a pixel and neighborhood pixels as noncasul model and extract the statistical characteristics from the radom texture field by using the 2D AR model(Aut oregressive). This paper regards on image as the output of linear system, and considers the fidelity or intelligibility criteria for measuring the quality of an image or the performance of the processing techinque. This study utilizes the variance of prediction error which is computed by substituting the gary level of pixel of another texture field into the two dimensional AR(autoregressive model)model fitted to the texture field, estimate the parameter us-ing the PAA(parameter adaptation algorithm) and design the defect detection filter. Later, we next try to study the defect detection search algorithm.
Journal of the Korean Data and Information Science Society
/
v.18
no.4
/
pp.963-972
/
2007
When a control chart signals that a special cause is present, process engineers must initiate a search for and an identification of the special cause. Knowing the time of the process change could lead to identify the special cause more quickly, and to take the appropriate actions immediately to improve quality. In this paper, we propose the maximum likelihood estimator (MLE) for the process change point when a control chart is used in monitoring the parameters of a process in which the observations can be modeled as a first-order autoregressive(AR(1)) process plus an additional random error.
The simulation techniques of hydrologic data series have develped for the purposes of the design of water resources system, the optimization of reservoir operation, and the design of flood control of reservoir, etc. While the stochastic models are usually used in most analysis of water resources fields for the generation of data sequences, the indexed sequential modeling (ISM) method based on generation of a series of overlapping short-term flow sequences directly from the historical record has been used for the data generation in the western USA since the early of 1980s. It was reported that the reliable results by ISM were obtained in practical applications. In this study, we generate annual inflow series at a location of Hong Cheon Dam site by using ISM method and autoregressive, order-1 model (AR(1)), and estimate the drought characteristics for the comparison aim between ISM and AR(1).
In this paper, we consider the first-order integer valued autoregressive(INAR(1)) model where correlation structure is similar to that of the continuous valued AR(1) process. Several methods for estimating the parameters of the INAR(1) process with negative binomial marginal are discussed. We derive asymptotic distributions of these estimators. The results of a simulation study for these estimators methods show that the estimator which we present in this paper is better than the estimator which Klimko and Nelson(1978) presented. As an application we considered the estimator of M/M/1 queue length.
In this paper, vibration-based methods to monitor damage in foundation-structure interface of harbor caisson structure are presented. The following approaches are implemented to achieve the objective. Firstly, vibration-based damage monitoring methods utilizing a variety of vibration features are selected for harbor caisson structure. Autoregressive (AR) model for time-series analysis and power spectral density (PSD) for frequency-domain analysis are selected to detect the change in the caisson structure. Also, the changes in modal parameters such as natural frequency and mode shape are examined for damage monitoring in the structure. Secondly, the feasibility of damage monitoring methods is experimentally examined on an un-submerged lab-scaled mono-caisson. Finally, numerical analysis of un-submerged mono-caisson, submerged mono-caisson and un-submerged interlocked multiple-caissons are carried out to examine the effect of boundary-dependent parameters on the damage monitoring of harbor caisson structures.
Journal of the Korean Data and Information Science Society
/
v.27
no.2
/
pp.559-564
/
2016
The Durbin-Watson (DW) test in regression model and the Ljung-Box (LB) test in ARMA (autoregressive moving average) model are typical examples of correlated error tests. The DW test is used for detecting autocorrelation of errors using the residuals from a regression analysis. The LB test is used for specifying the correct ARMA model using the first some sample autocorrelations based on the residuals of a tted ARMA model. In this article, simulations with four data generating processes have been carried out to evaluate their performances as correlated error tests. Our simulations show that the DW test is severely dependent on the assumed AR(1) model but isn't sensitive enough to reject the misspecified model and that the LB test reports lackluster performance in general.
근전도(EMG:Electromyogram)를 사용하여 국부 근육 피로(Localized Muscle Fatigue)를 정량화으로 분석 하기 위해 널리 이용되고 있는 AR(Autoregressive)모델의 1차 계수, RMS(Root Mean Square), ZCR(Zero Crossing Rate), MPF(Mean Power Frequency), MF(Median Frequency)를 선택하여, 근육이 발휘하는 힘과 시간의 흐름에 따라 근육 피로의 정도를 민감하게 나타내는 매개변수를 규명하였다. 피실험자 10명의 좌우 척추세움근(Erector Spinae Muscle)을 대상으로 등장수축(Sustained Isometric Contraction)조건에서 허리의 신전(Extension)운동을 실시하였다. 이때 발휘해야 하는 힘의 수준은 15%, 30%, 45%, 60%, 75% MVC 로 정하였고 각 수준마다 20초 동안 근전도를 측정하 였다. 데이터 분석은 총20초 구간의 근전도를 0.5초 간격으로 나누어 매개변수들을 각각 구하고 분석을 실시하였다. 시간의 흐름에 대한 피로도 분석 결과, AR 모델의 1차 계수와 MPF가 유의한 차이를 보였으며, 낮은 수준의 %MVC에서는 AR 계수가, 높은 수준에서는 MPF가 민감한 반응 결과를 나타냈다. 그리고 근육이 발휘하는 힘의 정도를 분석하기 위해 주로 사용되고 있는 RMS 보다는 더 AR 계수가 모든 수준에서 뚜렷하게 차이를 보인 것이 확인되었다. 따라서 AR 모델의 1차 계수가 근육의 피로 정도와 힘의 수준을 다른 매개변수에 비해 더욱 민감하게 구별함이 입증되었다. 이러한 결과는 다른 분야에서도 근육 피로를 정량적으로 측정하는데 사용될 수 있을 것으로 생각되며, 개인적 변이도를 고려한 확률 기법을 사용한다면 보다 정확한 근전도 분석이 이루어질 것으로 기대된다.있음을 알 수 있었다. 사료된다.의 결과는 자전거 에르고노미터의 결과가 트레드밀의 결과에 87.60%정도 나타났다.음을 관찰하였다. 특히 vitamin C와 E의 병용투여는 상승적으로 적용하여 간세포손상을 더욱 억제시킴을 알 수 있었다.mance and on TFP(Total Factor Productivity) growth which is a pure measure of firm performance. To utilize the advantage of panel data, FEM(Fixed Effect Model) and REM(Random Effect Model) were used. The empirical result shows that the entropy index as a measurement of inter-business relatedness is not significant but technological relatedness index is significant. OLS estimates on pooled data were considerably different from FEM or REM estimates on panel data. By introducing interaction effect among the three variables for business portfolio properties, we obtained three findings. First, only VI (Vertical integration) has a significant positive correlation with ROS. Second, when using TFP growth as an dependent variable, both TR(Technological Relatedness) and f[ are signif
KSII Transactions on Internet and Information Systems (TIIS)
/
v.10
no.9
/
pp.4240-4258
/
2016
A practical iterative channel estimation technique is proposed for the multiple-input-multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) system in the high-speed mobile environment, such as high speed railway scenario. In the iterative algorithm, the Kalman filter and data detection are jointed to estimate the time-varying channel, where the detection error is considered as part of the noise in the Kalman recursion in each iteration to reduce the effect of the detection error propagation. Moreover, the employed Kalman filter is from the canonical state space model, which does not include the parameters of the autoregressive (AR) model, so the proposed method does not need to estimate the parameters of AR model, whose accuracy affects the convergence speed. Simulation results show that the proposed method is robust to the fast time-varying channel, and it can obtain more gains compared with the available methods.
A wireless sensing system is designed for application to structural monitoring and damage detection applications. Embedded in the wireless monitoring module is a two-tier prediction model, the auto-regressive (AR) and the autoregressive model with exogenous inputs (ARX), used to obtain damage sensitive features of a structure. To validate the performance of the proposed wireless monitoring and damage detection system, two near full scale single-story RC-frames, with and without brick wall system, are instrumented with the wireless monitoring system for real time damage detection during shaking table tests. White noise and seismic ground motion records are applied to the base of the structure using a shaking table. Pattern classification methods are then adopted to classify the structure as damaged or undamaged using time series coefficients as entities of a damage-sensitive feature vector. The demonstration of the damage detection methodology is shown to be capable of identifying damage using a wireless structural monitoring system. The accuracy and sensitivity of the MEMS-based wireless sensors employed are also verified through comparison to data recorded using a traditional wired monitoring system.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.