• Title/Summary/Keyword: Autoregressive error(ARE) model

Search Result 106, Processing Time 0.03 seconds

A Study on the Causal Relationship between Logistics Infrastructure and Economic Growth: Empirical Evidence in Korea

  • Wang, Chao;Kim, Yul-Seong;Wang, Chong;Kim, Chi Yeol
    • Journal of Korea Trade
    • /
    • v.25 no.1
    • /
    • pp.18-33
    • /
    • 2021
  • Purpose - This paper investigates the causal relationship between logistics infrastructure development and the economic growth of Korea. Considering the industrial and economic structure of Korea, it is likely that logistics infrastructure is positively associated with the economic growth of the country. Design/methodology - The causal relationship between logistics infrastructure and economic development is estimated using Vector Autoregressive (VAR) and Vector Error Correction Model (VECM) considering long-run equilibrium between the two factors. To this end, a dataset consisting of 7 logistics infrastructure proxies and 5 economic growth indicators covering the period of 1990-2017 is used. Findings - It was found that causality, in general, runs from logistics infrastructure development to economic growth. Specifically, the results indicate that maritime transport is positively associated with the economic growth of Korea in terms of GDP and international trade. In addition, other modes of transport also have a positive impact on either the GDP or international trade of Korea. Originality/value - While existing studies in this area are based on either regional observations or a specific mode of transport, this study presents empirical evidence on causality between logistics infrastructure and the economic growth of Korea using a more comprehensive dataset. In addition, the findings in this paper can provide valuable implications for transport infrastructure development policies.

Application and Comparison of Dynamic Artificial Neural Networks for Urban Inundation Analysis (도시침수 해석을 위한 동적 인공신경망의 적용 및 비교)

  • Kim, Hyun Il;Keum, Ho Jun;Han, Kun Yeun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.5
    • /
    • pp.671-683
    • /
    • 2018
  • The flood damage caused by heavy rains in urban watershed is increasing, and, as evidenced by many previous studies, urban flooding usually exceeds the water capacity of drainage networks. The flood on the area which considerably urbanized and densely populated cause serious social and economic damage. To solve this problem, deterministic and probabilistic studies have been conducted for the prediction flooding in urban areas. However, it is insufficient to obtain lead times and to derive the prediction results for the flood volume in a short period of time. In this study, IDNN, TDNN and NARX were compared for real-time flood prediction based on urban runoff analysis to present the optimal real-time urban flood prediction technique. As a result of the flood prediction with rainfall event of 2010 and 2011 in Gangnam area, the Nash efficiency coefficient of the input delay artificial neural network, the time delay neural network and nonlinear autoregressive network with exogenous inputs are 0.86, 0.92, 0.99 and 0.53, 0.41, 0.98 respectively. Comparing with the result of the error analysis on the predicted result, it is revealed that the use of nonlinear autoregressive network with exogenous inputs must be appropriate for the establishment of urban flood response system in the future.

The Long-Run Relationship between House Prices and Economic Fundamentals: Evidence from Korean Panel Data (주택가격과 기초경제여건의 장기 관계: 우리나라의 패널 자료를 이용하여)

  • Sim, Sunghoon
    • International Area Studies Review
    • /
    • v.16 no.1
    • /
    • pp.3-27
    • /
    • 2012
  • This paper adopts recently developed panel unit root test that is cross-sectionally robust. Cointegration test is also used to find whether regional house prices are in line with gross regional domestic production (GRDP) in the long run in Korea during 1989-2009. Based on the panel VECM and the panel ARDL models, we examine causal relationships among the variables and estimate the long-run elasticity. We find evidence of cointegration and bidirectional causal relationships between regional house prices and GRDP. The results of long-run estimates, using both fixed effect and ARDL models, show that house prices positively and significantly influence on the GRDP and vice versa. Together with these results, the findings of ARDL-ECM imply that there exists a long-run equilibrium relationship between house prices and regional economic variables even if there is a possibility of short-run deviation from its long-run path.

The Analysis of Export-led Growth in the U.S. Economy: An Application for Agricultural Exports by 50 States (미국 경제의 수출견인성장에 대한 분석: 50개 주(州)의 농산물 수출을 중심으로)

  • Kang, Hyunsoo
    • International Area Studies Review
    • /
    • v.15 no.1
    • /
    • pp.107-133
    • /
    • 2011
  • This paper aims to analyze the causal relationships between agricultural exports and economic growth in the U.S. economy by 50 states. Using the annual data from 1973 to 2007, the theoretical methodologies based on the export-led growth (ELG) model under the static model, the impulse response function (IRF) and forecast error variation decomposition (FEVD) under the vector autoregressive (VAR) model, and the Granger causality test. The results show the causal relationship between agricultural exports and economic growth at the states' level. Especially, the ELG hypothesis is strongly supported in the case of 16 states (HI, ID, KS, MD, MI, MN, NJ, NC, ND, OK, OR, RI, SD, TX, WA, and WI) and is also weakly supported in the case of 31 states. Therefore, the agricultural exports are important factor of developing in the U.S. economy, and furthermore some states (located in coastal area and breadbasket) indicate the strong evidence for agricultural exports-led growth.

The Inter-correlation Analysis between Oil Prices and Dry Bulk Freight Rates (유가와 벌크선 운임의 상관관계 분석에 관한 연구)

  • Ahn, Byoung-Churl;Lee, Kee-Hwan;Kim, Myoung-Hee
    • Journal of Navigation and Port Research
    • /
    • v.46 no.3
    • /
    • pp.289-296
    • /
    • 2022
  • The purpose of this study was to investigate the inter-correlation between crude oil prices and Dry Bulk Freight rates. Eco-friendly shipping fuels has being actively developed to reduce carbon emission. However, carbon neutrality will take longer than anticipated in terms of the present development process. Because of OVID-19 and the Russian invasion of Ukraine, crude oil price fluctuation has been exacerbated. So we must examine the impact on Dry Bulk Freight rates the oil prices have had, because oil prices play a major role in shipping fuels. By using the VAR (Vector Autoregressive) model with monthly data of crude oil prices (Brent, Dubai and WTI) and Dry Bulk Freight rates (BDI, BCI and (BP I) 2008.10~2022.02, the empirical analysis documents that the oil prices have an impact on Dry bulk Freight rates. From the analysis of the forecast error variance decomposition, WTI has the largest explanatory relationship with the BDI and Dubai ranks seoond, Brent ranks third. In conclusion, WTI and Dubai have the largest impact on the BDI, while there are some differences according to the ship-type.

Unsuperised Image Segmentation Algorithm Using Markov Random Fields (마르코프 랜덤필드를 이용한 무관리형 화상분할 알고리즘)

  • Park, Jae-Hyeon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.8
    • /
    • pp.2555-2564
    • /
    • 2000
  • In this paper, a new unsupervised image segmentation algorithm is proposed. To model the contextual information presented in images, the characteristics of the Markov random fields (MRF) are utilized. Textured images are modeled as realizations of the stationary Gaussian MRF on a two-dimensional square lattice using the conditional autoregressive (CAR) equations with a second-order noncausal neighborhood. To detect boundaries, hypothesis tests over two masked areas are performed. Under the hypothesis, masked areas are assumed to belong to the same class of textures and CAR equation parameters are estimated in a minimum-mean-square-error (MMSE) sense. If the hypothesis is rejected, a measure of dissimilarity between two areas is accumulated on the rejected area. This approach produces potential edge maps. Using these maps, boundary detection can be performed, which resulting no micro edges. The performance of the proposed algorithm is evaluated by some experiments using real images as weB as synthetic ones. The experiments demonstrate that the proposed algorithm can produce satisfactorY segmentation without any a priori information.

  • PDF

A Hybrid Method to Improve Forecasting Accuracy Utilizing Genetic Algorithm: An Application to the Data of Processed Cooked Rice

  • Takeyasu, Hiromasa;Higuchi, Yuki;Takeyasu, Kazuhiro
    • Industrial Engineering and Management Systems
    • /
    • v.12 no.3
    • /
    • pp.244-253
    • /
    • 2013
  • In industries, shipping is an important issue in improving the forecasting accuracy of sales. This paper introduces a hybrid method and plural methods are compared. Focusing the equation of exponential smoothing method (ESM) that is equivalent to (1, 1) order autoregressive-moving-average (ARMA) model equation, a new method of estimating the smoothing constant in ESM had been proposed previously by us which satisfies minimum variance of forecasting error. Generally, the smoothing constant is selected arbitrarily. However, this paper utilizes the above stated theoretical solution. Firstly, we make estimation of ARMA model parameter and then estimate the smoothing constant. Thus, theoretical solution is derived in a simple way and it may be utilized in various fields. Furthermore, combining the trend removing method with this method, we aim to improve forecasting accuracy. This method is executed in the following method. Trend removing by the combination of linear and 2nd order nonlinear function and 3rd order nonlinear function is executed to the original production data of two kinds of bread. Genetic algorithm is utilized to search the optimal weight for the weighting parameters of linear and nonlinear function. For comparison, the monthly trend is removed after that. Theoretical solution of smoothing constant of ESM is calculated for both of the monthly trend removing data and the non-monthly trend removing data. Then forecasting is executed on these data. The new method shows that it is useful for the time series that has various trend characteristics and has rather strong seasonal trend. The effectiveness of this method should be examined in various cases.

Prediction Model of User Physical Activity using Data Characteristics-based Long Short-term Memory Recurrent Neural Networks

  • Kim, Joo-Chang;Chung, Kyungyong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.2060-2077
    • /
    • 2019
  • Recently, mobile healthcare services have attracted significant attention because of the emerging development and supply of diverse wearable devices. Smartwatches and health bands are the most common type of mobile-based wearable devices and their market size is increasing considerably. However, simple value comparisons based on accumulated data have revealed certain problems, such as the standardized nature of health management and the lack of personalized health management service models. The convergence of information technology (IT) and biotechnology (BT) has shifted the medical paradigm from continuous health management and disease prevention to the development of a system that can be used to provide ground-based medical services regardless of the user's location. Moreover, the IT-BT convergence has necessitated the development of lifestyle improvement models and services that utilize big data analysis and machine learning to provide mobile healthcare-based personal health management and disease prevention information. Users' health data, which are specific as they change over time, are collected by different means according to the users' lifestyle and surrounding circumstances. In this paper, we propose a prediction model of user physical activity that uses data characteristics-based long short-term memory (DC-LSTM) recurrent neural networks (RNNs). To provide personalized services, the characteristics and surrounding circumstances of data collectable from mobile host devices were considered in the selection of variables for the model. The data characteristics considered were ease of collection, which represents whether or not variables are collectable, and frequency of occurrence, which represents whether or not changes made to input values constitute significant variables in terms of activity. The variables selected for providing personalized services were activity, weather, temperature, mean daily temperature, humidity, UV, fine dust, asthma and lung disease probability index, skin disease probability index, cadence, travel distance, mean heart rate, and sleep hours. The selected variables were classified according to the data characteristics. To predict activity, an LSTM RNN was built that uses the classified variables as input data and learns the dynamic characteristics of time series data. LSTM RNNs resolve the vanishing gradient problem that occurs in existing RNNs. They are classified into three different types according to data characteristics and constructed through connections among the LSTMs. The constructed neural network learns training data and predicts user activity. To evaluate the proposed model, the root mean square error (RMSE) was used in the performance evaluation of the user physical activity prediction method for which an autoregressive integrated moving average (ARIMA) model, a convolutional neural network (CNN), and an RNN were used. The results show that the proposed DC-LSTM RNN method yields an excellent mean RMSE value of 0.616. The proposed method is used for predicting significant activity considering the surrounding circumstances and user status utilizing the existing standardized activity prediction services. It can also be used to predict user physical activity and provide personalized healthcare based on the data collectable from mobile host devices.

A Study on the stock price prediction and influence factors through NARX neural network optimization (NARX 신경망 최적화를 통한 주가 예측 및 영향 요인에 관한 연구)

  • Cheon, Min Jong;Lee, Ook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.8
    • /
    • pp.572-578
    • /
    • 2020
  • The stock market is affected by unexpected factors, such as politics, society, and natural disasters, as well as by corporate performance and economic conditions. In recent days, artificial intelligence has become popular, and many researchers have tried to conduct experiments with that. Our study proposes an experiment using not only stock-related data but also other various economic data. We acquired a year's worth of data on stock prices, the percentage of foreigners, interest rates, and exchange rates, and combined them in various ways. Thus, our input data became diversified, and we put the combined input data into a nonlinear autoregressive network with exogenous inputs (NARX) model. With the input data in the NARX model, we analyze and compare them to the original data. As a result, the model exhibits a root mean square error (RMSE) of 0.08 as being the most accurate when we set 10 neurons and two delays with a combination of stock prices and exchange rates from the U.S., China, Europe, and Japan. This study is meaningful in that the exchange rate has the greatest influence on stock prices, lowering the error from RMSE 0.589 when only closing data are used.

Investigation on Granger Causality between Economic Growth and Demand for Electricity in Korea: Using Quarterly Data (한국의 경제성장과 전력수요간의 인과성에 관한 연구: 분기별 자료를 이용하여)

  • Baek, Moon-Young;Kim, Woo-Hwan
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.1
    • /
    • pp.89-99
    • /
    • 2012
  • This study investigates the Granger-causality between economic growth and demand for electricity in Korea, using two quarterly time-series data (real GDP and electricity consumption) for 1970:Q1 through 2009:Q4. We apply Hsiao's sequential procedure to identify a vector autoregressive model to a decision of the optimal lags in the vector error-correction model because the two time-series data contain unit roots respectively and they are cointegrated. According to the empirical results in this study, we find that Hsiao's approach to the Granger-causality indicates a bidirectional causal relation between economic growth and demand for electricity in Korea. Following the Granger and Engle's approach, we also find the statistical evidence on (1) short-run bidirectional causality between real GDP and electricity consumption, (2) bidirectional strong causality between them, and (3) long-run unidirectional causality running from demand for electricity to economic growth. Our results show an inconsistency with the existing studies on Korea's case; however, the results appear to provide more meaningful policy implications for the Korean economy and its strategy of sustainable growth.