• Title/Summary/Keyword: Autoregressive Process

Search Result 166, Processing Time 0.025 seconds

A Note on the Strong Mixing Property for a Random Coefficient Autoregressive Process

  • Lee, Sang-Yeol
    • Journal of the Korean Statistical Society
    • /
    • v.24 no.1
    • /
    • pp.243-248
    • /
    • 1995
  • In this article we show that a class of random coefficient autoregressive processes including the NEAR (New exponential autoregressive) process has the strong mixing property in the sense of Rosenblatt with mixing order decaying to zero. The result can be used to construct model free prediction interval for the future observation in the NEAR processes.

  • PDF

Comments on Functional Relations in the Parameters of Multivariate Autoregressive Process Observed with Noise

  • Jong Hyup Lee;Dong Wan Shin
    • Communications for Statistical Applications and Methods
    • /
    • v.2 no.2
    • /
    • pp.94-100
    • /
    • 1995
  • Vector autoregressive process disturbed by measurement error is a vector autoregressive process with nonlineat parametric restrictions on the parameter. A Newton-Raphson procedure for estimating the parameter which take advantage of the information contained in the restrictions is proposed.

  • PDF

Unit Root Test for Temporally Aggregated Autoregressive Process

  • Shin, Dong-Wan;Kim, Sung-Chul
    • Journal of the Korean Statistical Society
    • /
    • v.22 no.2
    • /
    • pp.271-282
    • /
    • 1993
  • Unit root test for temporally aggregated first order autoregressive process is considered. The temporal aggregate of fist order autoregression is an autoregressive moving average of order (1,1) with moving average parameter being function of the autoregressive parameter. One-step Gauss-Newton estimators are proposed and are shown to have the same limiting distribution as the ordinary least squares estimator for unit root when complete observations are available. A Monte-Carlo simulation shows that the temporal aggregation have no effect on the size. The power of the suggested test are nearly the same as the powers of the test based on complete observations.

  • PDF

Kernel method for autoregressive data

  • Shim, Joo-Yong;Lee, Jang-Taek
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.5
    • /
    • pp.949-954
    • /
    • 2009
  • The autoregressive process is applied in this paper to kernel regression in order to infer nonlinear models for predicting responses. We propose a kernel method for the autoregressive data which estimates the mean function by kernel machines. We also present the model selection method which employs the cross validation techniques for choosing the hyper-parameters which affect the performance of kernel regression. Artificial and real examples are provided to indicate the usefulness of the proposed method for the estimation of mean function in the presence of autocorrelation between data.

  • PDF

Support vector quantile regression for autoregressive data

  • Hwang, Hyungtae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.6
    • /
    • pp.1539-1547
    • /
    • 2014
  • In this paper we apply the autoregressive process to the nonlinear quantile regression in order to infer nonlinear quantile regression models for the autocorrelated data. We propose a kernel method for the autoregressive data which estimates the nonlinear quantile regression function by kernel machines. Artificial and real examples are provided to indicate the usefulness of the proposed method for the estimation of quantile regression function in the presence of autocorrelation between data.

A Laplacian Autoregressive Moving-Average Time Series Model

  • Son, Young-Sook
    • Journal of the Korean Statistical Society
    • /
    • v.22 no.2
    • /
    • pp.259-269
    • /
    • 1993
  • A moving average model, LMA(q) and an autoregressive-moving average model, NLARMA(p, q), with Laplacian marginal distribution are constructed and their properties are discussed; Their autocorrelation structures are completely analogus to those of Gaussian process and they are partially time reversible in the third order moments. Finally, we study the mixing property of NLARMA process.

  • PDF

A Comparison Study of Bayesian Methods for a Threshold Autoregressive Model with Regime-Switching (국면전환 임계 자기회귀 분석을 위한 베이지안 방법 비교연구)

  • Roh, Taeyoung;Jo, Seongil;Lee, Ryounghwa
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.6
    • /
    • pp.1049-1068
    • /
    • 2014
  • Autoregressive models are used to analyze an univariate time series data; however, these methods can be inappropriate when a structural break appears in a time series since they assume that a trend is consistent. Threshold autoregressive models (popular regime-switching models) have been proposed to address this problem. Recently, the models have been extended to two regime-switching models with delay parameter. We discuss two regime-switching threshold autoregressive models from a Bayesian point of view. For a Bayesian analysis, we consider a parametric threshold autoregressive model and a nonparametric threshold autoregressive model using Dirichlet process prior. The posterior distributions are derived and the posterior inferences is performed via Markov chain Monte Carlo method and based on two Bayesian threshold autoregressive models. We present a simulation study to compare the performance of the models. We also apply models to gross domestic product data of U.S.A and South Korea.

On the AR(1) Process with Stochastic Coefficient

  • Hwang, Sun-Y
    • Communications for Statistical Applications and Methods
    • /
    • v.3 no.2
    • /
    • pp.77-83
    • /
    • 1996
  • This paper is concerned with an estimation problem for the AR(1) process $Y_t, t=0, {\pm}1, {\cdots}$with time carying autoregressive coefficient, where coefficient itself is also stochastic process. Attention is directed to the problem of finding a consistent estimator of ${\Phi}$, the mean level of autoregressive coefficient. The asymptotic distribution of the resulting consistent estimator of ${\Phi}$, is them discussed. We do not assume any time series model for the time varying autoregressive coefficient.

  • PDF

On Asymptotic Properties of Bootstrap for Autoregressive Processes with Regularly Varying Tail Probabilities

  • Kang, Hee-Jeong
    • Journal of the Korean Statistical Society
    • /
    • v.26 no.1
    • /
    • pp.31-46
    • /
    • 1997
  • Let $X_{t}$ = .beta. $X_{{t-1}}$ + .epsilon.$_{t}$ be an autoregressive process where $\mid$.beta.$\mid$ < 1 and {.epsilon.$_{t}$} is independent and identically distriubted with regularly varying tail probabilities. This process is called the asymptotically stationary first-order autoregressive process (AR(1)) with infinite variance. In this paper, we obtain a host of weak convergences of some point processes based on bootstrapping of { $X_{t}$}. These kinds of results can be generalized under the infinite variance assumption to ensure the asymptotic validity of the bootstrap method for various functionals of { $X_{t}$} such as partial sums, sample covariance and sample correlation functions, etc.ions, etc.

  • PDF