• Title/Summary/Keyword: Autophagy inhibitor

Search Result 88, Processing Time 0.038 seconds

Ginsenoside Re prevents 3-methyladenine-induced catagen phase acceleration by regulating Wnt/β-catenin signaling in human dermal papilla cells

  • Gyusang Jeong;Seung Hyun Shin;Su Na Kim;Yongjoo Na;Byung Cheol Park;Jeong Hun Cho;Won-Seok Park;Hyoung-June Kim
    • Journal of Ginseng Research
    • /
    • v.47 no.3
    • /
    • pp.440-447
    • /
    • 2023
  • Background: The human hair follicle undergoes cyclic phases-anagen, catagen, and telogen-throughout its lifetime. This cyclic transition has been studied as a target for treating hair loss. Recently, correlation between the inhibition of autophagy and acceleration of the catagen phase in human hair follicles was investigated. However, the role of autophagy in human dermal papilla cells (hDPCs), which is involved in the development and growth of hair follicles, is not known. We hypothesized that acceleration of hair catagen phase upon inhibition of autophagy is due to the downregulation of Wnt/β-catenin signaling in hDPCs, and that components of Panax ginseng extract can increase the autophagic flux in hDPCs. Methods: We generated an autophagy-inhibited condition using 3-methyladenine (3-MA), a specific autophagy inhibitor, and investigated the regulation of Wnt/β-catenin signaling using the luciferase reporter assay, qRT-PCR, and western blot analysis. In addition, cells were cotreated with ginsenoside Re and 3-MA and their roles in inhibiting autophagosome formation were investigated. Results: We found that the unstimulated anagen phase dermal papilla region expressed the autophagy marker, LC3. Transcription of Wnt-related genes and nuclear translocation of β-catenin were reduced after treatment of hDPCs with 3-MA. In addition, treatment with the combination of ginsenoside Re and 3-MA changed the Wnt activity and hair cycle by restoring autophagy. Conclusions: Our results suggest that autophagy inhibition in hDPCs accelerates the catagen phase by downregulating Wnt/β-catenin signaling. Furthermore, ginsenoside Re, which increased autophagy in hDPCs, could be useful for reducing hair loss caused by abnormal inhibition of autophagy.

Gartanin enhances TRAIL-mediated liver cancer cell death through DR5 upregulation and autophagy activation

  • Dong-Oh Moon
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.53-59
    • /
    • 2023
  • Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has no effect on normal cells, but selectively can induce apoptosis in tumor cells. Gartanin, a xanthone compound in mangosteen, has been shown to inhibit cancer cell growth by arresting the cell cycle and inducing autophage. In this study, we revealed that gartanin can sensitize TRAIL-induced human liver cancer cell death. We also found that gartanin enhances DR5 expression, a death receptor for TRAIL. This effect appears to be related to CHOP activation associated with the response of endoplasmic reticulum stress. Gartanin treatment also inhibited p62 protein expression and cleaved LC3 to activate autophagy flux, which is related with TRAIL-induced cell death. Pretreatment with autophagy flux inhibitor, LY294002, inhibited gartanin-induced DR5 expression. In summary, our results reveal that the combined treatment of gartanin and TRAIL can be a valuable tool for cancer treatment.

Polysaccharide from Polygonatum Inhibits the Proliferation of Prostate Cancer-Associated Fibroblasts Cells

  • Han, Shu-Yu;Hu, Ming-Hua;Qi, Guan-Yun;Ma, Chao-Xiong;Wang, Yuan-Yuan;Ma, Fang-Li;Tao, Ning;Qin, Zhi-Hai
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.8
    • /
    • pp.3829-3833
    • /
    • 2016
  • Inhibition of cancer-associated fibroblasts (CAFs) may improve the efficacy of cancer therapy. Polysaccharide extracted from polygonatum can selectively inhibit the growth of prostate-CAFs (p<0.001) without inhibiting the growth of normal fibroblasts (NAFs). Polysaccharides from polygonatum stimulate autophagy of prostate-CAFs. 3-methyl-adenine(3-MA) is an autophagy inhibitor. 3-MA was added to prostate-CAFs with polysaccharide from polygonatum to determine whether autophagy plays an important role in the restrained effect. Finally, polysaccharide from polygonatum treatment significantly increased the activation of Beclin-1 and LC3, key autophagy proteins. Polysaccharide from polygonatum stimulates autophagy of prostate-CAFs and inhibits prostate-CAF growth, indicating that a novel anti-cancer strategy involves inhibiting the growth of prostate-CAFs.

Nitric Oxide-Induced Autophagy in MC3T3-E1 Cells is Associated with Cytoprotection via AMPK Activation

  • Yang, Jung Yoon;Park, Min Young;Park, Sam Young;Yoo, Hong Il;Kim, Min Seok;Kim, Jae Hyung;Kim, Won Jae;Jung, Ji Yeon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.6
    • /
    • pp.507-514
    • /
    • 2015
  • Nitric oxide (NO) is important in the regulation of bone remodeling, whereas high concentration of NO promotes cell death of osteoblast. However, it is not clear yet whether NO-induced autophagy is implicated in cell death or survival of osteoblast. The present study is aimed to examine the role of NO-induced autophagy in the MC3T3-E1 cells and their underlying molecular mechanism. The effect of sodium nitroprusside (SNP), an NO donor, on the cytotoxicity of the MC3T3-E1 cells was determined by MTT assay and expression of apoptosis or autophagy associated molecules was evaluated by western blot analysis. The morphological observation of autophagy and apoptosis by acridine orange stain and TUNEL assay were performed, respectively. Treatment of SNP decreased the cell viability of the MC3T3-E1 cells in dose- and time-dependent manner. SNP increased expression levels of p62, ATG7, Beclin-1 and LC3-II, as typical autophagic markers and augmented acidic autophagolysosomal vacuoles, detected by acridine orange staining. However, pretreatment with 3-methyladenine (3MA), the specific inhibitor for autophagy, decreased cell viability, whereas increased the cleavage of PARP and caspase-3 in the SNP-treated MC3T3-E1 cells. AMP-activated protein kinase (AMPK), a major autophagy regulatory kinase, was activated in SNP-treated MC3T3-E1 cells. In addition, pretreatment with compound C, an inhibitor of AMPK, decreased cell viability, whereas increased the number of apoptotic cells, cleaved PARP and caspase-3 levels compared to those of SNP-treated MC3T3-E1 cells. Taken together, it is speculated that NO-induced autophagy functions as a survival mechanism via AMPK activation against apoptosis in the MC3T3-E1 cells.

Autophagy Involvement in Olanzapine-Mediated Cytotoxic Effects in Human Glioma Cells

  • Wang, Yi-Xuan;Xu, Shu-Qing;Chen, Xiang-Hui;Liu, Rui-Si;Liang, Zhong-Qin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.19
    • /
    • pp.8107-8113
    • /
    • 2014
  • The aim of this study was to investigate the effects of olanzapine on growth inhibition as well as autophagy in glioma cells in vitro and in vivo. The proliferation of both LN229 and T98 glioma cells, measured by MTT assay, was suppressed in a concentration-dependent and time-dependent manner. Moreover, apoptosis of both cells was significantly increased with the treatment of olanzapine as evidenced by increased Bcl-2 expression, Hoechst 33258 staining and annexinV-FITC/PI staining. Olanzapine treatment also enhanced activation of autophagy with increased expression of LC3-II, expression of protein p62, a substrate of autophagy, being decreased. The growth inhibition by olanzapine in both glioma cell lines could be blocked by co-treatment with 3-MA, an autophagy inhibitor. Furthermore, olanzapine effectively blocked the growth of subcutaneous xenografts of LN229 glioma cells in vivo. The increased level of protein LC3-II and decreased level of p62 followed by a decreased level of Bcl-2, suggesting that autophagy may contribute to apoptosis. In addition, reduced proliferation of glioma cells was shown by a decrease of Ki-67 staining and increased caspase-3 staining indicative of apoptosis in mouse xenografts. These results indicated that olanzapine inhibited the growth of glioma cells accompanied by induction of autophagy and apoptosis both in vitro and in vivo. Olanzapine-induced autophagy plays a tumor-suppressing role in glioma cells.

Gintonin stimulates autophagic flux in primary cortical astrocytes

  • Rahman, Md. Ataur;Hwang, Hongik;Nah, Seung-Yeol;Rhim, Hyewhon
    • Journal of Ginseng Research
    • /
    • v.44 no.1
    • /
    • pp.67-78
    • /
    • 2020
  • Background: Gintonin (GT), a novel ginseng-derived exogenous ligand of lysophosphatidic acid (LPA) receptors, has been shown to induce cell proliferation and migration in the hippocampus, regulate calcium-dependent ion channels in the astrocytes, and reduce β-amyloid plaque in the brain. However, whether GT influences autophagy in cortical astrocytes is not yet investigated. Methods: We examined the effect of GT on autophagy in primary cortical astrocytes using immunoblot and immunocytochemistry assays. Suppression of specific proteins was performed via siRNA. LC3 puncta was determined using confocal microscopy. Results: GT strongly upregulated autophagy marker LC3 by a concentration- as well as time-dependent manner via G protein-coupled LPA receptors. GT-induced autophagy was further confirmed by the formation of LC3 puncta. Interestingly, on pretreatment with an mammalian target of rapamycin (mTOR) inhibitor, rapamycin, GT further enhanced LC3-II and LC3 puncta expression. However, GT-induced autophagy was significantly attenuated by inhibition of autophagy by 3-methyladenine and knockdown Beclin-1, Atg5, and Atg7 gene expression. Importantly, when pretreated with a lysosomotropic agent, E-64d/peps A or bafilomycin A1, GT significantly increased the levels of LC3-II along with the formation of LC3 puncta. In addition, GT treatment enhanced autophagic flux, which led to an increase in lysosome-associated membrane protein 1 and degradation of ubiquitinated p62/SQSTM1. Conclusion: GT induces autophagy via mTOR-mediated pathway and elevates autophagic flux. This study demonstrates that GT can be used as an autophagy-inducing agent in cortical astrocytes.

Neuroprotective Effect of Astersaponin I against Parkinson's Disease through Autophagy Induction

  • Zhang, Lijun;Park, Jeoung Yun;Zhao, Dong;Kwon, Hak Cheol;Yang, Hyun Ok
    • Biomolecules & Therapeutics
    • /
    • v.29 no.6
    • /
    • pp.615-629
    • /
    • 2021
  • An active compound, triterpene saponin, astersaponin I (AKNS-2) was isolated from Aster koraiensis Nakai (AKNS) and the autophagy activation and neuroprotective effect was investigated on in vitro and in vivo Parkinson's disease (PD) models. The autophagy-regulating effect of AKNS-2 was monitored by analyzing the expression of autophagy-related protein markers in SH-SY5Y cells using Western blot and fluorescent protein quenching assays. The neuroprotection of AKNS-2 was tested by using a 1-methyl-4-phenyl-2,3-dihydropyridium ion (MPP+)-induced in vitro PD model in SH-SY5Y cells and an MPTP-induced in vivo PD model in mice. The compound-treated SH-SY5Y cells not only showed enhanced microtubule-associated protein 1A/1B-light chain 3-II (LC3-II) and decreased sequestosome 1 (p62) expression but also showed increased phosphorylated extracellular signal-regulated kinases (p-Erk), phosphorylated AMP-activated protein kinase (p-AMPK) and phosphorylated unc-51-like kinase (p-ULK) and decreased phosphorylated mammalian target of rapamycin (p-mTOR) expression. AKNS-2-activated autophagy could be inhibited by the Erk inhibitor U0126 and by AMPK siRNA. In the MPP+-induced in vitro PD model, AKNS-2 reversed the reduced cell viability and tyrosine hydroxylase (TH) levels and reduced the induced α-synuclein level. In an MPTP-induced in vivo PD model, AKNS-2 improved mice behavioral performance, and it restored dopamine synthesis and TH and α-synuclein expression in mouse brain tissues. Consistently, AKNS-2 also modulated the expressions of autophagy related markers in mouse brain tissue. Thus, AKNS-2 upregulates autophagy by activating the Erk/mTOR and AMPK/mTOR pathways. AKNS-2 exerts its neuroprotective effect through autophagy activation and may serve as a potential candidate for PD therapy.

Benzyl Isothiocyanate-Induced Cytotoxicity via the Inhibition of Autophagy and Lysosomal Function in AGS Cells

  • Po, Wah Wah;Choi, Won Seok;Khing, Tin Myo;Lee, Ji-Yun;Lee, Jong Hyuk;Bang, Joon Seok;Min, Young Sil;Jeong, Ji Hoon;Sohn, Uy Dong
    • Biomolecules & Therapeutics
    • /
    • v.30 no.4
    • /
    • pp.348-359
    • /
    • 2022
  • Gastric adenocarcinoma is among the top causes of cancer-related death and is one of the most commonly diagnosed carcinomas worldwide. Benzyl isothiocyanate (BITC) has been reported to inhibit the gastric cancer metastasis. In our previous study, BITC induced apoptosis in AGS cells. The purpose of the present study was to investigate the effect of BITC on autophagy mechanism in AGS cells. First, the AGS cells were treated with 5, 10, or 15 μM BITC for 24 h, followed by an analysis of the autophagy mechanism. The expression level of autophagy proteins involved in different steps of autophagy, such as LC3B, p62/SQSTM1, Atg5-Atg12, Beclin1, p-mTOR/mTOR ratio, and class III PI3K was measured in the BITC-treated cells. Lysosomal function was investigated using cathepsin activity and Bafilomycin A1, an autophagy degradation stage inhibitor. Methods including qPCR, western blotting, and immunocytochemistry were employed to detect the protein expression levels. Acridine orange staining and omnicathepsin assay were conducted to analyze the lysosomal function. siRNA transfection was performed to knock down the LC3B gene. BITC reduced the level of autophagy protein such as Beclin 1, class III PI3K, and Atg5-Atg12. BITC also induced lysosomal dysfunction which was shown as reducing cathepsin activity, protein level of cathepsin, and enlargement of acidic vesicle. Overall, the results showed that the BITC-induced AGS cell death mechanism also comprises the inhibition of the cytoprotective autophagy at both initiation and degradation steps.

Effects of mTORC1 inhibition on proteasome activity and levels

  • Park, Seo Hyeong;Choi, Won Hoon;Lee, Min Jae
    • BMB Reports
    • /
    • v.55 no.4
    • /
    • pp.161-165
    • /
    • 2022
  • The mechanistic target of rapamycin (mTOR) regulates numerous extracellular and intracellular signals involved in the maintenance of cellular homeostasis and cell growth. mTOR also functions as an endogenous inhibitor of autophagy. Under nutrient-rich conditions, mTOR complex 1 (mTORC1) phosphorylates the ULK1 complex, preventing its activation and subsequent autophagosome formation, while inhibition of mTORC1 using either rapamycin or nutrient deprivation induces autophagy. Autophagy and proteasomal proteolysis provide amino acids necessary for protein translation. Although the connection between mTORC1 and autophagy is well characterized, the association of mTORC1 inhibition with proteasome biogenesis and activity has not been fully elucidated yet. Proteasomes are long-lived cellular organelles. Their spatiotemporal rather than homeostatic regulation could be another adaptive cellular mechanism to respond to starvation. Here, we reviewed several published reports and the latest research from our group to examine the connection between mTORC1 and proteasome. We have also investigated and described the effect of mTORC1 inhibition on proteasome activity using purified proteasomes. Since mTORC1 inhibitors are currently evaluated as treatments for several human diseases, a better understanding of the link between mTORC1 activity and proteasome function is of utmost importance.

The Role of HS-1200 Induced Autophagy in Oral Cancer Cells

  • Jang, Nam-Mi;Oh, Sang-Hun;Kim, In-Ryoung;Park, Hae-Ryoun;Park, Bong-Soo
    • International Journal of Oral Biology
    • /
    • v.38 no.3
    • /
    • pp.93-100
    • /
    • 2013
  • Bile acids and synthetic bile acid derivatives induce apoptosis in various kinds of cancer cells and thus have anticancer properties. Recently, it has been suggested that autophagy may play an important role in cancer therapy. However, few data are available regarding the role of autophagy in oral cancers and there have been no reports of autophagic cell death in OSCCs (oral squamous cell carcinoma cells) induced by HS-1200, a synthetic bile acid derivative. We thus examine whether HS-1200 modulates autophagy in OSCCs. Our findings indicate that HS-1200 has anticancer effects in OSCCs, and we observed in these cells that autophagic vacuoles were visible by monodansylcadaverine (MDC)and acridine orange staining. When we analyzed HS-1200-treated OSCC cells for the presence of biochemical markers, we observed that this treatment directly affects the conversion of LC-3II, degradation of p62/SQSTM1 and full-length beclin-1, cleavage of ATG5-12 and the activation of caspase. An autophagy inhibitor suppressed HS-1200-induced cell death in OSCCs, confirming that autophagy acts as a pro-death signal in these cells. Furthermore, HS-1200 shows anticancer activity against OSCCs via both autophagy and apoptosis. Our current findings suggest that HS-1200 may potentially contribute to oral cancer treatment and thus provide useful information for the future development of a new therapeutic agent.