• Title/Summary/Keyword: Autonomous underwater robot

Search Result 49, Processing Time 0.027 seconds

Voronoi Diagram-based USBL Outlier Rejection for AUV Localization

  • Hyeonmin Sim;Hangil Joe
    • Journal of Ocean Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.115-123
    • /
    • 2024
  • USBL systems are essential for providing accurate positions of autonomous underwater vehicles (AUVs). On the other hand, the accuracy can be degraded by outliers because of the environmental conditions. A failure to address these outliers can significantly impact the reliability of underwater localization and navigation systems. This paper proposes a novel outlier rejection algorithm for AUV localization using Voronoi diagrams and query point calculation. The Voronoi diagram divides data space into Voronoi cells that center on ultra-short baseline (USBL) data, and the calculated query point determines if the corresponding USBL data is an inlier. This study conducted experiments acquiring GPS and USBL data simultaneously and optimized the algorithm empirically based on the acquired data. In addition, the proposed method was applied to a sensor fusion algorithm to verify its effectiveness, resulting in improved pose estimations. The proposed method can be applied to various sensor fusion algorithms as a preprocess and could be used for outlier rejection for other 2D-based location sensors.

Bundle Adjustment and 3D Reconstruction Method for Underwater Sonar Image (수중 영상 소나의 번들 조정과 3차원 복원을 위한 운동 추정의 모호성에 관한 연구)

  • Shin, Young-Sik;Lee, Yeong-jun;Cho, Hyun-Taek;Kim, Ayoung
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.2
    • /
    • pp.51-59
    • /
    • 2016
  • In this paper we present (1) analysis of imaging sonar measurement for two-view relative pose estimation of an autonomous vehicle and (2) bundle adjustment and 3D reconstruction method using imaging sonar. Sonar has been a popular sensor for underwater application due to its robustness to water turbidity and visibility in water medium. While vision based motion estimation has been applied to many ground vehicles for motion estimation and 3D reconstruction, imaging sonar addresses challenges in relative sensor frame motion. We focus on the fact that the sonar measurement inherently poses ambiguity in its measurement. This paper illustrates the source of the ambiguity in sonar measurements and summarizes assumptions for sonar based robot navigation. For validation, we synthetically generated underwater seafloor with varying complexity to analyze the error in the motion estimation.

An Implementation of PI Controller for the Position Control of Mobile Robot Using LabVIEW (LabVIEW를 이용한 이동로봇 위치제어를 위한 PI제어기 구현)

  • Park, Young-Hwan
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.259-263
    • /
    • 2008
  • The dynamics of mobile robot is nonlinear. To cope with this nonlinearity, many advanced control schemes have been proposed recently. Generally, the advanced control schemes are complicated and not good for the practical real-time control when they are implemented as control programs. So, in this paper, a relatively simple PI controller is proposed and applied to the position control of mobile robot with the adoption of reference trajectory calculation method used for the AUV(Autonomous Underwater Vehicle) control. The proposed PI controller is programmed using LabVIEW which is popular for its graphical programming characteristics. The simulation and experimental results show the feasibility and effectiveness of the proposed PI controller.

  • PDF

A Study on the Protocol Design and Implementation for an Underwater Acoustic Multi-channel Digital Communication (수중 초음파 디지탈 이동통신을 위한 프로토콜 설계 및 구현에 관한 연구)

  • 박연식;임재홍
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.1
    • /
    • pp.179-189
    • /
    • 2000
  • Recently, due to the increasing interests in deep sea development, all possible efforts to the development of underwater unmanned working vehicles such as AUV(Autonomous Underwater Vehicle) or underwater robot are exerted. This paper proposes a new efficient acoustic-based underwater image data communication system, which ensures a certain level of maximum throughput regardless of the propagation delay of ultrasonic and allowsfast data transmission through the multiple ultrasonic communication channel. Proposed system consists of an acoustic transducer which operates at 136kHz center frequency and it's 10kHz bandwidth, pre-amplifier, $\pi/4 QPSK$(Quadrature Phase Shift Keying) modulation/demodu-lation method, image compressing method using JPEG technique and modified Stop & Wait protocol. The experimental result of the system make it possible to transfer the underwater image as a high throughput at the basin test. The results of test are also verified which allows to desirable transmission performance compared with the existing developed system and the possibility to put the practical use of survey and investigation in the water.

  • PDF

Terminal Guidance Control for Underwater-Docking of an AUV Using Visual Guidance Device (광학식 유도장치를 이용한 자율 무인잠수정의 수중 도킹 종단 유도 제어)

  • Choi, Dong-Hyun;Jun, Bong-Huan;Park, Jin-Yeong;Lee, Pan-Mook;Kim, Sang-Hyun;Oh, Jun-Ho
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.335-338
    • /
    • 2006
  • The more deeply the researches make progress in ocean researches including the seabed resource investigation or the oceanic ecosystem investigation, the more important the role of UUV gets. In case of study on the deep sea, there are difficulties in telecommunications between AUV and ships, and in data communication and recharging. Therefore, docking is required. In AUV docking system, the AUV should identify the position of docking and make contact with a certain point of docking device. MOERI (Maritime & Ocean Engineering Research Institute), KORDI has conducted the docking testing on AUV ISIMI in KORDI Ocean Engineering Water Tank. As AUV ISIMI approachs the docking device, it is presented that attitude is unstable, because the lights Which is on Image Frame are disappeared. So we fix the rudder and stem, if the lights on Image Frame are reaching the specific area in the Image Frame. In this paper, we intend to solve the problems that were found in the testing, which, first, will be identified via simulation.

  • PDF

Depth-adaptive controller for spent nuclear fuel inspections

  • Song, Bongsub;Park, Jongwon;Yun, Dongwon
    • Nuclear Engineering and Technology
    • /
    • v.52 no.8
    • /
    • pp.1669-1676
    • /
    • 2020
  • The IAEA held the IAEA Robotics Challenge 2017 (IRC2017) to protect workers during inspections of spent nuclear fuel and to improve work efficiency and accuracy rates. To this end, we developed an unmanned surface vehicle (USV) system called the spent fuel check vehicle (SCV). The SCV extracts and tracks the target through image processing, and it is necessary to find suitable parameters for the SNF storage environment in advance. This preliminary work takes time. It is also difficult to prepare the environment in which the work will proceed. In addition, if the preliminary work does not proceed as planned, the system will not move at the proper speed and will become unstable, with yawing and overshoot. To solve this problem, we developed a controller with a camera that can extract the depth at which the target is stored and allow distance-adaptive control. This controller is able to attenuate system instability factors such as yawing and overshoot better than existing controllers by continuously changing system operation parameters according to the depth. In addition, the time required for preliminary work during inspections can be shortened.

PBIS: A Pre-Batched Inspection Strategy for spent nuclear fuel inspection robot

  • Bongsub Song;Jongwon Park;Dongwon Yun
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4695-4702
    • /
    • 2023
  • Nuclear power plants play a pivotal role in the global energy infrastructure, fulfilling a substantial share of the world's energy requirements in a sustainable way. The management of these facilities, especially the handling of spent nuclear fuel (SNF), necessitates meticulous inspections to guarantee operational safety and efficiency. However, the prevailing inspection methodologies lean heavily on human operators, which presents challenges due to the potential hazards of the SNF environment. This study introduces the design of a novel Pre-Batched Inspection Strategy (PBIS) that integrates robotic automation and image processing techniques to bolster the inspection process. This methodology deploys robotics to undertake tasks that could be perilous or time-intensive for humans, while image processing techniques are used for precise identification of SNF targets and regulating the robotic system. The implementation of PBIS holds considerable promise in minimizing inspection time and enhancing worker safety. This paper elaborates on the structure, capabilities, and application of PBIS, underlining its potential implications for the future of nuclear energy inspections.

Study of Design for Convertible ROV (새로운 Convertible ROV의 설계 연구)

  • Choi, Hyeung-Sik;Jeon, Ji-Kwang;Jeong, Sang-Ki;Park, Han-Il;You, Sam-Sang
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.451-458
    • /
    • 2012
  • In this paper, the design study of a new convertible six d.o.f underwater robot which can be a ROV or AUV according to underwater work purpose is presented. A structure design about the ROV and the AUV and its design on the control system is presented. In case of the AUV, an analysis on thruster forces in accordance with operating speed has been performed. A sensor fusion board which can proceed various sensor signals to identify correct positions and speeds has been developed and a total control system including EKF(Extended Kalman Filter) has been designed and developed.

Design and Control of 6 D.O.F(Degrees of Freedom) Hovering AUV (6자유도 호버링 AUV의 설계 및 제어)

  • Jeong, Sang-Ki;Choi, Hyeung-Sik;Seo, Jung-Min;Tran, Ngoc Huy;Kim, Joon-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.9
    • /
    • pp.797-804
    • /
    • 2013
  • In this paper, a study of a new hovering six dof underwater robot with redundant horizontal thrusters, titled HAUV (hovering AUV), is presented. The results of study on the structure design, deployment of thrusters, and development of the developed control system of the AUV was presented. For the HAUV structure, a structure design and an analysis of the thrusting system was performed. For navigation, a sensor fusion board which can proceed various sensor signals to identify correct positions and speeds was developed and a total control system including EKF (Extended Kalman Filter) was designed. Rolling, pitching and depth control tests of the HAUV have been performed, and relatively small angle error and depth tracking error results were shown.