DOI QR코드

DOI QR Code

Voronoi Diagram-based USBL Outlier Rejection for AUV Localization

  • Hyeonmin Sim (Department of Robot and Smart System Engineering, Kyungpook National University) ;
  • Hangil Joe (Department of Smart Mobility Engineering, Kyungpook National University)
  • Received : 2024.03.28
  • Accepted : 2024.05.30
  • Published : 2024.06.30

Abstract

USBL systems are essential for providing accurate positions of autonomous underwater vehicles (AUVs). On the other hand, the accuracy can be degraded by outliers because of the environmental conditions. A failure to address these outliers can significantly impact the reliability of underwater localization and navigation systems. This paper proposes a novel outlier rejection algorithm for AUV localization using Voronoi diagrams and query point calculation. The Voronoi diagram divides data space into Voronoi cells that center on ultra-short baseline (USBL) data, and the calculated query point determines if the corresponding USBL data is an inlier. This study conducted experiments acquiring GPS and USBL data simultaneously and optimized the algorithm empirically based on the acquired data. In addition, the proposed method was applied to a sensor fusion algorithm to verify its effectiveness, resulting in improved pose estimations. The proposed method can be applied to various sensor fusion algorithms as a preprocess and could be used for outlier rejection for other 2D-based location sensors.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (Ministry of Science and ICT) (No. 2021R1C1C1008655), and the Korea Institute of Marine Science & Technology Promotion (KIMST) with funds from the Ministry of Oceans and Fisheries (20220188, Gyeongbuk Sea Grant) in 2022.

References

  1. Caccia, M., & Veruggio, G. (2000). Guidance and control of a reconfigurable unmanned underwater vehicle. Control Engineering Practice, 8(1), 21-37. https://doi.org/10.1016/s0967-0661(99)00125-2
  2. Carlson, N. A. (1988, November). Federated filter for fault-tolerant integrated navigation systems. In IEEE PLANS'88, Position Location and Navigation Symposium, Record. 'Navigation into the 21st Century'. (pp. 110-119). IEEE. https://doi.org/10.1109/plans.1988.195473
  3. Edelsbrunner, H., & Seidel, R. (1985). Voronoi diagrams and arrangements. Proceedings of the first annual symposium on computational geometry (SCG' 85), 251-262. https://doi.org/10.1145/323233.323266
  4. Hubert, M., & Debruyne, M. (2010). Minimum covariance determinant. Wiley interdisciplinary reviews: WIREs Computational statistics, 2(1), 36-43. https://doi.org/10.1002/wics.61
  5. Joe, H., Cho, H., Sung, M., Kim, J., & Yu, S. (2021). Sensor fusion of two sonar devices for underwater 3D mapping with an AUV. Autonomous Robots, 45, 543-560. https://doi.org/10.1007/s10514-021-09986-5
  6. Krishnamurthy, P., & Khorrami, F. (2013). A self-aligning underwater navigation system based on fusion of multiple sensors including DVL and IMU. 2013 9th Asian Control Conference (ASCC), Istanbul, Turkey. https://doi.org/10.1109/ascc.2013.6606318
  7. Lee, P.-M., Park, J.-Y., Baek, H., Kim, S.-M., Jun, B.-H., Kim, H.-S., & Lee, P.-Y. (2022). Underwater navigation of AUVs using uncorrelated measurement error model of USBL. Journal of Ocean Engineering and Technology, 36(5), 340-352. https://doi.org/10.26748/ksoe.2022.019
  8. Lee, P.-M., Shim, H., Baek, H., Kim, B., Park, J.-Y., Jun, B.-H., & Yoo, S.-Y. (2017). Navigation system for a deep-sea ROV fusing USBL, DVL, and heading measurements. Journal of Ocean Engineering and Technology, 31(4), 315-323. https://doi.org/10.26748/ksoe.2017.08.31.4.315
  9. Liu, X., Liu, X., Zhang, T., & Wang, Q. (2019). Robust data cleaning methodology using online support vector regression for ultra-short baseline positioning system. Review of Scientific Instruments, 90(12). https://doi.org/10.1063/1.5078785
  10. Morgado, M., Oliveira, P., & Silvestre, C. (2015). Robust outliers detection and classification for USBL underwater positioning systems. In Moreira, A., Matos, A., Veiga, G. (Eds.), CONTROLO'2014 - Proceedings of the 11th Portuguese Conference on Automatic Control: Lecture Notes in Electrical Engineering, Vol. 321, 555-565. https://doi.org/10.1007/978-3-319-10380-8_53
  11. Pyo, J., Cho, H., Joe, H., Ura, T., & Yu, S.-C. (2015). Development of hovering type AUV "Cyclops" and its performance evaluation using image mosaicing. Ocean Engineering, 109, 517-530. https://doi.org/10.1016/j.oceaneng.2015.09.023
  12. Rigby, P., Pizarro, O., & Williams, S. B. (2006, September). Towards geo-referenced AUV navigation through fusion of USBL and DVL measurements. In OCEANS 2006 (pp. 1-6). IEEE. https://doi.org/10.1109/OCEANS.2006.306898
  13. Sack, J. R., & Urrutia, J. (Eds.). (1999). Handbook of computational geometry. Elsevier. https://doi.org/10.1016/B978-0-444-82537-7.X5000-1