• 제목/요약/키워드: Autonomous robots

검색결과 398건 처리시간 0.029초

인공 면역망과 퍼지 시스템을 이용한 자율이동로봇 주행 (Autonomous Mobile Robot Navigation using Artificial Immune Networks and Fuzzy Systems)

  • 김양현;이동제;이민중;최영규
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제51권9호
    • /
    • pp.402-412
    • /
    • 2002
  • The navigation algorithms enable autonomous mobile robots to reach given target points without collision against obstacles. To achieve safe navigations in unknown environments, this paper presents an effective navigation algorithm for the autonomous mobile robots with ultrasonic sensors. The proposed navigation algorithm consists of an obstacle-avoidance behavior, a target-reaching behavior and a fuzzy-based decision maker. In the obstacle-avoidance behavior and the target-reaching behavior, artificial immune networks are used to select a proper steering angle, make the autonomous mobile robot avoid obstacles and approach a given target point. The fuzzy-based decision maker combines the steering angles from the target-reaching behavior and the obstacle-avoidance behavior in order to steer the autonomous mobile robot appropriately. Simulational and experimental results show that the proposed navigation algorithm is very effective in unknown environments.

자율 보행 로봇을 위한 내고장성 제어 (Fault Tolerance in Control of Autonomous Legged Robots)

  • 양정민
    • 제어로봇시스템학회논문지
    • /
    • 제9권11호
    • /
    • pp.943-951
    • /
    • 2003
  • A strategy for fault-tolerant gaits of autonomous legged robots is proposed. A legged robot is considered to be fault tolerant with respect to a given failure if it is guaranteed to be capable of walking maintaining its static stability after the occurrence of the failure. The failure concerned in this paper is a locked joint failure for which a joint in a leg cannot move and is locked in place. If a failed joint is locked, the workspace of the resulting leg is constrained, but legged robots have fault tolerance capability to continue static walking. An algorithm for generating fault-tolerant gaits is described and, especially, periodic gaits are presented for forward walking of a hexapod robot with a locked joint failure. The leg sequence and the formula of the stride length are analytically driven based on gait study and robot kinematics. The transition procedure from a normal gait to the proposed fault-tolerant gait is shown to demonstrate the applicability of the proposed scheme.

복수의 자율 이동 로보트 상호간의 동역학 (Dynamics of Interacting Multiple Autonomous Mobile Robots)

  • Lee, Suck-Gyu
    • 대한전기학회논문지
    • /
    • 제40권3호
    • /
    • pp.308-315
    • /
    • 1991
  • This paper deals with the global dynamic behavior of multiple autonomous mobile robots with suggested navigation strategies within unbounded and bounded spatial domain. We derive some navigation strategies of robots wirh complete detectability with finite range to reach their goal states without collision which is motivated by Coulomb's law regarding repulsive and attractive forces between electrical charges. An analysis of the dynamic behavior of the interacting robots with the suggested navigation strategies under the assumption that communication is not permissible between robots is made and some examples are illustrated by computer simulation. The convergence of robot motions to their goal states under certain conditions is established by considering their global dynamic behavior even when some objects are close to their goal points.

  • PDF

Autonomous Navigation of an Underwater Robot in the Presence of Multiple Moving Obstacles

  • Kwon, Kyoung-Youb;Joh, Joong-Seon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제5권2호
    • /
    • pp.124-130
    • /
    • 2005
  • Obstacle avoidance of underwater robots based on a modified virtual force field algorithm is proposed in this paper. The VFF(Virtual Force Field) algorithm, which is widely used in the field of mobile robots, is modified for application to the obstacle avoidance of underwater robots. This Modified Virtual Force Field(MVFF) algorithm using the fuzzy lgoc can be used in moving obstacles avoidance. A fuzzy algorithm is devised to handle various situations which can be faced during autonomous navigation of underwater robots. The proposed obstacle avoidance algorithm has ability to handle multiple moving obstacles. Results of simulation show that the proposed algorithm can be efficiently applied to obstacle avoidance of the underwater robots.

수정된 전역 DWA에 의한 자율이동로봇의 경로계획 (Path Planning for Autonomous Mobile Robots by Modified Global DWA)

  • 윤희상;박태형
    • 전기학회논문지
    • /
    • 제60권2호
    • /
    • pp.389-397
    • /
    • 2011
  • The global dynamic window approach (DWA) is widely used to generate the shortest path of mobile robots considering obstacles and kinematic constraints. However, the dynamic constraints of robots should be considered to generate the minimum-time path. We propose a modified global DWA considering the dynamic constraints of robots. The reference path is generated using A* algorithm and smoothed by cardinal spline function. The trajectory is then generated to follows the reference path in the minimum time considering the robot dynamics. Finally, the local path is generated using the dynamic window which includes additional terms of speed and orientation. Simulation and experimental results are presented to verify the performance of the proposed method.

Adaptive Distributed Autonomous Robotic System based on Artificial Immune Network and Classifier System

  • Hwang, Chul-Min;Sim, Kwee-Bo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1286-1290
    • /
    • 2004
  • This paper proposes a Distributed Autonomous Robotic System (DARS) based on an Artificial Immune Network (AIN) and a Classifier System (CS). The behaviors of robots in the system are divided into global behaviors and local behaviors. The global behaviors are actions to search tasks in environment. These actions are composed of two types: aggregation and dispersion. AIN decides one between these two actions, which robot should select and act on in the global. The local behaviors are actions to execute searched tasks. The robots learn the cooperative actions in these behaviors by the CS in the local. The relation between global and local increases the performance of system. Also, the proposed system is more adaptive than the existing system at the viewpoint that the robots learn and adapt the changing of tasks.

  • PDF

카디널스플라인을 이용한 자율이동로봇의 곡선경로 생성방법 (Smooth Path Planning Method for Autonomous Mobile Robots Using Cardinal Spline)

  • 윤희상;박태형
    • 전기학회논문지
    • /
    • 제59권4호
    • /
    • pp.803-808
    • /
    • 2010
  • We propose a smooth path planning method for autonomous mobile robots. Due to nonholonomic constraints by obstacle avoidance, the smooth path planning is a complicated one. We generate smooth path that is considered orientation of robot under nonholonomic constraints. The proposed smooth planning method consists of two steps. Firstly, the initial path composed of straight lines is obtained from V-graph by Dijkstra's algorithm. Then the initial path is transformed by changing the curve. We apply the cardinal spline into the stage of curve generation. Simulation results show a performance of proposed smooth path planning method.

이동로봇 자율주행을 위한 행위모듈의 실행순서 조정기법 (Sequencing Strategy for Autonomous Mobile Robots in Real Environments)

  • 송인섭;박정민;오상록;조영조;박귀태
    • 제어로봇시스템학회논문지
    • /
    • 제5권3호
    • /
    • pp.297-305
    • /
    • 1999
  • Autonomous mobile robots are required to achieve multiple goals while responding quickly to the dynamic environments. An appropriate robot control architecture, which clearly and systematically defines the relationship among the inputs, the processing functions and the outputs, thus needs to be embedded in the robot controller. This paper proposes a kind of hybrid control architecture which combines the key features of the two well-known robot control architectures; hierarchical and behavioral- based. The overall control architecture consists of three layers, i.e. the highest planner, the middle plan executor, and the lowest monitor and behavior-based controller. In the planned situation, only one behavior module is chosen by the logical coordinator in the plan executor according to the way point bin. In the exceptional situation, the central controller in the plan executor issues an additional control command to reach the planned way point. Several simulations and experiments with autonomous mobile robot show that the proposed architecture enables the robot controller to achieve the multiple sequential goals even in dynamic and uncertain environments.

  • PDF

ROS 기반 모바일 로봇을위한 다중 층 자율 주행 시스템 설계 (Design of Multiple Floors Autonomous Navigation System Based On ROS Enabled Mobile Robots)

  • 함디 아흐메드;장종욱
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2018년도 추계학술대회
    • /
    • pp.55-57
    • /
    • 2018
  • In Simultaneous Localization and Mapping (SLAM), the robot acquire its map of environment while simultaneously localize itself relative to the map. Now a day, a map acquired by the mobile robots limit to specific area, in an indoor environment and cannot able to navigate autonomous between different floors. We propose a design that could able to overcome this issue in order to navigate multiple floors with one end goal mission to a target destination in the course of autonomous navigation. In this research, we consider all the floors have identical structural arrangement. Internet of Things (IoT) playing crucial role in bridging between "things" and Robot Operating System (ROS) enabled mobile robots.

  • PDF

자율 이동 로봇의 실시간 제어를 위한 가.감속 함수의 개발 (Development o f Acceleration/deceleration Function for Real-time Control of Autonomous Mobile Robots)

  • 이수종;정원지
    • 한국공작기계학회논문집
    • /
    • 제10권6호
    • /
    • pp.36-41
    • /
    • 2001
  • This article presents a new acceleration/deceleration method for real-time control of autonomous mobile robots. In this method, a function which produces the table of acceleration/deceleration in real-time is proposed. This function, while sat- isfying the basic concept of mechanics, can choose both various ranges of velocity and distance ranges for the selected velocities. Moreover it can control motors in real time. This function is convenient to be realized by programming. In addi- tion, it is faster than other functions because it can be written by assembly language.

  • PDF