Autonomous Mobile Robot Navigation using Artificial Immune Networks and Fuzzy Systems

인공 면역망과 퍼지 시스템을 이용한 자율이동로봇 주행

  • 김양현 ((주)IT 커뮤니티) ;
  • 이동제 (부산대 전기공학과) ;
  • 이민중 ((주)IT 커뮤니티) ;
  • 최영규 (부산대 컴퓨터 및 정보통신연구소 전자전기정보 컴퓨터공학부)
  • Published : 2002.09.01

Abstract

The navigation algorithms enable autonomous mobile robots to reach given target points without collision against obstacles. To achieve safe navigations in unknown environments, this paper presents an effective navigation algorithm for the autonomous mobile robots with ultrasonic sensors. The proposed navigation algorithm consists of an obstacle-avoidance behavior, a target-reaching behavior and a fuzzy-based decision maker. In the obstacle-avoidance behavior and the target-reaching behavior, artificial immune networks are used to select a proper steering angle, make the autonomous mobile robot avoid obstacles and approach a given target point. The fuzzy-based decision maker combines the steering angles from the target-reaching behavior and the obstacle-avoidance behavior in order to steer the autonomous mobile robot appropriately. Simulational and experimental results show that the proposed navigation algorithm is very effective in unknown environments.

Keywords

References

  1. O. Khatib, 'Real-time obstacle avoidance for manipulators and mobile robots,' Proc. of the IEEE International Conference on Robotics and Automation, pp. 500-505, 1985
  2. J. Borenstein and Y. Koren, 'Potential field methods and their inherent limitations for mobile robot navigation,'Proc. of the IEEE International Conference on Robotics and Automation, pp. 1398-1404, 1991 https://doi.org/10.1109/ROBOT.1991.131810
  3. J Borenstein and Y. Koren, 'Real-time obstacle avoidance for fast mobile robots,'IEEE Transaction on Systems, Man, and Cybernetics, vol. 19, pp. 1179-1187, 1989 https://doi.org/10.1109/21.44033
  4. J. Borenstein and Y. Koren, 'The vector field histogram fast obstacle avoidance for mobile robots,' IEEE Transaction on Robotics and Automation, vol. 7, pp. 278-288, 1991 https://doi.org/10.1109/70.88137
  5. C. Ye and D. Wang, 'A novel behavior fusion method for the navigation of mobile robots,'Proc. of the IEEE International Conference on Systems, Man, and Cybernetics, vol. 5, pp. 3526-3531, 2000 https://doi.org/10.1109/ICSMC.2000.886555
  6. H. R. Beom and H. S. Cho, 'A sensor-based obstacle avoidance controller for a mobile robot using fuzzy logic and neural network,'Proc. of the IEEE International Conference on Intelligent Robots and Systems, vol. 2, pp. 1470 -1475, 1992 https://doi.org/10.1109/IROS.1992.594576
  7. A. Ramirez-Serrano and M. Boumedine, 'Real-time navigation in unknown environments using fuzzy logic and ultrasonic sensing,' Proc. of the IEEE International Symposium on Intelligent Control, pp. 26-30, 1996 https://doi.org/10.1109/ISIC.1996.556172
  8. K. P. Prabir and K. Asim, 'Mobile robot navigation using a neural net,' Proc. of the IEEE International Conference on Robotics and Automation, pp, 1503-1508, 1996 https://doi.org/10.1109/ROBOT.1995.525488
  9. A. Ishiguro, Y. Watanabe and Y. Uchikawa, 'An immunological approach to dynamic behavior control for autonomous mobile robots,' Proc. of the IEEE International Conference on Intelligent Robots and Systems, vol. 1, pp. 495-500, 1995 https://doi.org/10.1109/IROS.1995.525842
  10. A. Ishiguro, Y. Shirai, T. Kondo and Y. Uchikawa, 'Immunoid: an architecture for behavior arbitration based on the immune networks,' Proc. of the IEEE International Conference on Intelligent Robots and Systems, vol. 3, pp, 1730-1738, 1996 https://doi.org/10.1109/IROS.1996.569044
  11. A. Ishiguro, T. Kondo, Y. Watanabe and Y. Uchikawa, 'Dynamic behavior arbitration of autonomous bobile robots using immune networks,' Proc. of the IEEE International Conference on Evolutionary Computation, vol. 2, pp, 722-727, 1995 https://doi.org/10.1109/ICEC.1995.487474
  12. 이동제, 이민중, 최영구, '인공 면역망과 인터넷에 의한 자율 이동로봇 시스템 설계', 대한전기학회논문지, 50D권 11호, pp. 522-531, 2001
  13. W. L. Xu and S. K. Tso, 'Sensor-based fuzzy reactive navigation of a mobile robot through local target switching,' IEEE Transaction on Systems, Man, and Cybernetics, vol. 29, no. 3, pp. 451-459, 1999 https://doi.org/10.1109/5326.777079
  14. N. K. Jerne, 'The immune system,' Scientific American, vol. 229, no. 1, pp. 52-60, 1973 https://doi.org/10.1038/scientificamerican0773-52
  15. N. K. Jerne, 'Towards the network theory of the immune system,' Ann Immunol. (inst. Pasteur), vol. 125C, pp, 373-389, 1974
  16. N. K. Jerne, 'Idiotypic networks and other preconceived ideas,' Immunological Rev., vol. 79, pp. 5-24, 1984 https://doi.org/10.1111/j.1600-065X.1984.tb00484.x
  17. Ronald C. ArKin, Behavior-Based Robotics, The MIT Press, 1998
  18. D. Kortenkamp, R. Bonasso and R. Murphy, Artificial Intelligence and Mobile Robots, The MIT Press, 1998
  19. K. Y. Im and S. Y. Oh, 'An extended virtual force field based behavioral fusion with neural networks and evolutionary programming for mobile robot navigation,' Proc. of the 2000 Congress on Evolutionary Computation, vol. 2, pp. 1238-1244, 2000 https://doi.org/10.1109/CEC.2000.870792