• Title/Summary/Keyword: Autonomous landing

Search Result 37, Processing Time 0.025 seconds

Real-time collision-free landing path planning for drone deliveries in urban environments

  • Hanseob Lee;Sungwook Cho;Hoon Jung
    • ETRI Journal
    • /
    • v.45 no.5
    • /
    • pp.746-757
    • /
    • 2023
  • This study presents a novel safe landing algorithm for urban drone deliveries. The rapid advancement of drone technology has given rise to various delivery services for everyday necessities and emergency relief efforts. However, the reliability of drone delivery technology is still insufficient for application in urban environments. The proposed approach uses the "landing angle control" method to allow the drone to land vertically and a rapidly exploring random tree-based collision avoidance algorithm to generate safe and efficient vertical landing paths for drones while avoiding common urban obstacles like trees, street lights, utility poles, and wires; these methods allow for precise and reliable urban drone delivery. We verified the approach within a Gazebo simulation operated through ROS using a six-degree-of-freedom drone model and sensors with similar specifications to actual models. The performance of the algorithms was tested in various scenarios by comparing it with that of stateof-the-art 3D path planning algorithms.

A Study on Autonomous Stair-climbing System Using Landing Gear for Stair-climbing Robot (계단 승강 로봇의 계단 승강 시 랜딩기어를 활용한 자율 승강 기법에 관한 연구)

  • Hwang, Hyun-Chang;Lee, Won-Young;Ha, Jong-Hee;Lee, Eung-Hyuck
    • Journal of IKEEE
    • /
    • v.25 no.2
    • /
    • pp.362-370
    • /
    • 2021
  • In this paper, we propose the Autonomous Stair-climbing system based on data from ToF sensors and IMU in developing stair-climbing robots to passive wheelchair users. Autonomous stair-climbing system are controlled by separating the timing of landing gear operation by location and utilizing state machines. To prove the theory, we construct and experiment with standard model stairs. Through an experiment to get the Attack angle, the average error of operating landing gear was 2.19% and the average error of the Attack angle was 2.78%, and the step division and status transition of the autonomous stair-climbing system were verified. As a result, the performance of the proposed techniques will reduce constraints of transportation handicapped.

Current Status and Development Direction of Advanced Air Mobility ICTs (Advanced Air Mobility ICT 기술 현황 및 발전 방향)

  • B.J. Oh;M.S. Lee;B.K. Kim;Y.J. Jeong;Y.J. Lim;C.D. Lim
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.3
    • /
    • pp.1-10
    • /
    • 2023
  • In this study, the status of global advanced air mobility (AAM) was investigated to derive information and communications technologies (ICTs) that should be prepared according to directions of domestic AAM development. AAM is an urban air traffic system for moving from city to city by electric vertical take-off and landing or personal aircraft. It is expected to establish a three-dimensional air traffic system that can solve ground traffic congestion caused by the rapid global urbanization. With the full-scale commercialization of AAM solutions, high-density air traffic is expected, and with the advent of the personal air vehicle (PAV), the flight space usage is expected to expand. Therefore, it is necessary to develop a safe AAM service through early research on core ICTs for autonomous flight.

Application of neural network for airship take-off and landing system by buoyancy change

  • Chang, Yong-Jin;Woo, Gui-Aee;Kim, Jong-Kwon;Cho, Kyeum-Rae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.333-336
    • /
    • 2003
  • For long time, the takeoff and landing control of airship was worked by human handling. With the development of the autonomous control system, the exact controls during the takeoff and landing were required and lots of methods and algorithms were suggested. This paper presents the result of airship take-off and landing by buoyancy control using air ballonet volume change and performance control of pitch angle for stable flight within the desired altitude. For the complexity of airship's dynamics, firstly, simple PID controller was applied. Due to the various atmospheric conditions, this controller didn’t give satisfactory results. Therefore, new control method was designed to reduce rapidly the error between designed trajectory and actual trajectory by learning algorithm using an artificial neural network. Generally, ANN has various weaknesses such as large training time, selection of neuron and hidden layer numbers required to deal with complex problem. To overcome these drawbacks, in this paper, the RBFN (radial basis function network) controller developed.

  • PDF

Requirement Analysis of Navigation System for Lunar Lander According to Mission Conditions (임무조건에 따른 달 착륙선 항법시스템 요구성능 분석)

  • Park, Young Bum;Park, Chan Gook;Kwon, Jae Wook;Rew, Dong Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.9
    • /
    • pp.734-745
    • /
    • 2017
  • The navigation system of lunar lander are composed of various navigation sensors which have a complementary characteristics such as inertial measurement unit, star tracker, altimeter, velocimeter, and camera for terrain relative navigation to achieve the precision and autonomous navigation capability. The required performance of sensors has to be determined according to the landing scenario and mission requirement. In this paper, the specifications of navigation sensors are investigated through covariance analysis. The reference error model with 77 state vector and measurement model are derived for covariance analysis. The mission requirement is categorized as precision exploration with 90m($3{\sigma}$ ) landing accuracy and area exploration with 6km($3{\sigma}$ ), and the landing scenario is divided into PDI(Powered descent initiation) and DOI(Deorbit initiation) scenario according to the beginning of autonomous navigation. The required specifications of the navigation sensors are derived by analyzing the performance according to the sensor combination and landing scenario.

Research of the Delivery Autonomy and Vision-based Landing Algorithm for Last-Mile Service using a UAV (무인기를 이용한 Last-Mile 서비스를 위한 배송 자동화 및 영상기반 착륙 알고리즘 연구)

  • Hanseob Lee;Hoon Jung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.2
    • /
    • pp.160-167
    • /
    • 2023
  • This study focuses on the development of a Last-Mile delivery service using unmanned vehicles to deliver goods directly to the end consumer utilizing drones to perform autonomous delivery missions and an image-based precision landing algorithm for handoff to a robot in an intermediate facility. As the logistics market continues to grow rapidly, parcel volumes increase exponentially each year. However, due to low delivery fees, the workload of delivery personnel is increasing, resulting in a decrease in the quality of delivery services. To address this issue, the research team conducted a study on a Last-Mile delivery service using unmanned vehicles and conducted research on the necessary technologies for drone-based goods transportation in this paper. The flight scenario begins with the drone carrying the goods from a pickup location to the rooftop of a building where the final delivery destination is located. There is a handoff facility on the rooftop of the building, and a marker on the roof must be accurately landed upon. The mission is complete once the goods are delivered and the drone returns to its original location. The research team developed a mission planning algorithm to perform the above scenario automatically and constructed an algorithm to recognize the marker through a camera sensor and achieve a precision landing. The performance of the developed system has been verified through multiple trial operations within ETRI.

Autonomous landing of drones using deep learning GPS-denied environments (GPS 음영지역에서 딥러닝을 활용한 드론 자율 착륙)

  • Chae-Hui Park;Sung-Mahn Ahn
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.15-18
    • /
    • 2023
  • UAV는 군사용을 처음 시작으로 근래에 취미용 드론의 급격한 성장과 더불어 최근 기후변화, 교통혼잡, 범죄 예방 등 여러 사회 문제 해결을 위한 드론의 필요성이 증가함에 따라 건설, 교통, 농업, 에너지, 엔터테인먼트 등 다양한 산업과 여러 사회 서비스로 그 필요성이 확대되고 있다. 본 연구는 이러한 사회적 흐름에 따라 인공지능 기술을 통한 드론의 활용성을 확대하고 GPS 수신이 안 되는 환경에서 딥러닝 객체 탐지 모델을 활용한 자율 착륙을 연구를 목표로 한다. GPS 신호는 실내와 같은 환경 혹은 지하, 교량 아래, 산속 등과 같은 곳에서는 수신이 어렵다. 이를 극복하고자 GPS 신호수신이 어려운 지역에서 GPS 수신기를 통해 받는 위치 정보 대신 드론에 장착된 카메라를 통해 전달받는 영상에서 착륙할 지점을 인식하고 카메라를 통해 받는 영상 정보만 이용하여 목표지점으로 하강하는 방식으로 자율 착륙을 유도한다. 딥러닝 중 경량화 모델을 활용하여 소형 드론에서 실시간으로 착륙 지점을 감지하기 위해 최적화 과정을 진행해 실시간 자율 착륙이 가능하게 하였다. 본 연구를 통해 드론의 착륙에 있어 GPS 수신기와 사람의 조종에 대한 의존도를 낮출 수 있을 것으로 기대한다.

  • PDF

A Trend Survey on Precision Positioning Technology for Drones (드론 정밀 측위 기술 동향)

  • J.H. Lee;J. Jeon;K. Han;Y. Cho;C.D. Lim
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.3
    • /
    • pp.11-19
    • /
    • 2023
  • Drones, which were early operated by remote control, have evolved to enable autonomous flight by combining various sensors and software tools. In particular, autonomous flight of drones was possible since the application of GNSS-RTK (global navigation satellite system with real-time kinematic positioning), a precision satellite navigation technology. For instance, unmanned drone delivery based on GNSS-RTK data was demonstrated for pizza delivery in Korea for the first time in 2021. However, the vulnerabilities of GNSS-RTK should be overcome for delivery drones to be commercialized. In particular, jamming in the navigation system and low positioning accuracy in urban areas should be addressed. Solving these two problems can lead to stable flight, takeoff, and landing of drones in urban areas, and the corresponding solutions are expected to establish a hybrid positioning technology. We discuss current trends in hybrid positioning technology that can either replace or complement GNSS-RTK for stable drone autonomous flight.

Generating an Autonomous Landing Testbed of Simulated UAV applied by GA (GA를 적용한 모의 UAV의 자율착륙 테스트베드 구축)

  • Han, Changhee
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.1
    • /
    • pp.93-98
    • /
    • 2019
  • In case of unmanned aerial vehicles used in modern society, there has been a problem where a human operator should be still needed to control the UAV because of a lower level of autonomy. In this paper, genetic algorithm is selected as a methodology for the autonomy accomplishment and then we verify a possibility of UAV autonomy by applying the GA. The landing is one of the important classical tasks on aerial vehicle and the lunar Landing is one of the most historical events. Autonomy possibility of computer-simulated UAV is verified by landing autonomy method of a falling body equipped with a propulsion system similar to the lunar Lander. When applying the GA, the genom is encoded only with 4 actions (left-turn, right-turn, thrust, and free-fall) and applied onto the falling body, Then we applied the major operations of GA and achieved a success experiment. A major contribution is to construct a simulated UAV where an autonomy of UAV can be accomplished while minimizing the sensor dependency. Also we implemented a test-bed where the possibility of autonomy accomplishment by applying the GA can be verified.

Vision-based Navigation for VTOL Unmanned Aerial Vehicle Landing (수직이착륙 무인항공기 자동 착륙을 위한 영상기반 항법)

  • Lee, Sang-Hoon;Song, Jin-Mo;Bae, Jong-Sue
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.226-233
    • /
    • 2015
  • Pose estimation is an important operation for many vision tasks. This paper presents a method of estimating the camera pose, using a known landmark for the purpose of autonomous vertical takeoff and landing(VTOL) unmanned aerial vehicle(UAV) landing. The proposed method uses a distinctive methodology to solve the pose estimation problem. We propose to combine extrinsic parameters from known and unknown 3-D(three-dimensional) feature points, and inertial estimation of camera 6-DOF(Degree Of Freedom) into one linear inhomogeneous equation. This allows us to use singular value decomposition(SVD) to neatly solve the given optimization problem. We present experimental results that demonstrate the ability of the proposed method to estimate camera 6DOF with the ease of implementation.