DOI QR코드

DOI QR Code

Real-time collision-free landing path planning for drone deliveries in urban environments

  • Hanseob Lee (Digital Convergence Research Laboratory, Postal & Logistics Technology Research Center, Electronics Telecommunications Research Institute) ;
  • Sungwook Cho (Department of Aeronautical and Mechanical Engineering, Cheongju University) ;
  • Hoon Jung (Digital Convergence Research Laboratory, Postal & Logistics Technology Research Center, Electronics Telecommunications Research Institute)
  • 투고 : 2023.03.28
  • 심사 : 2023.08.09
  • 발행 : 2023.10.20

초록

This study presents a novel safe landing algorithm for urban drone deliveries. The rapid advancement of drone technology has given rise to various delivery services for everyday necessities and emergency relief efforts. However, the reliability of drone delivery technology is still insufficient for application in urban environments. The proposed approach uses the "landing angle control" method to allow the drone to land vertically and a rapidly exploring random tree-based collision avoidance algorithm to generate safe and efficient vertical landing paths for drones while avoiding common urban obstacles like trees, street lights, utility poles, and wires; these methods allow for precise and reliable urban drone delivery. We verified the approach within a Gazebo simulation operated through ROS using a six-degree-of-freedom drone model and sensors with similar specifications to actual models. The performance of the algorithms was tested in various scenarios by comparing it with that of stateof-the-art 3D path planning algorithms.

키워드

과제정보

Ministry of Science and ICT, South Korea, Grant/Award Number: NRF-2020R1G1A10048001; Ministry of Trade, Industry and Energy (MOTIE), Republic of Korea, Grant/Award Number: RS-2023-00256794

참고문헌

  1. L. Ke, W. Zhengzhong, and Y. Suozhong, Automatic landing on carrier method of unmanned air vehicle, (Proc. IEEE Chin. Guid. Navig. Control Conf., IEEE, Yantai, China), 2014, pp. 299-302.
  2. D. You, Y. D. Jung, S. W. Cho, H. M. Shin, S. H. Lee, and D. H. Shim, A guidance and control law design for precision automatic take-off and landing of fixed-wing UAVs, (Proc. AIAA Guid. Navig. Control Conf., American Institute of Aeronautics and Astronautics, Minneapolis, MN, USA), 2012, pp. 4674.
  3. O. Petrovska and U. Rechkoska-Shikoska, Aircraft precision landing using integrated GPS/INS system, Transport Probl. 8 (2013), 17-25.
  4. P. Williams and M. Crump, Intelligent landing system for landing UAVs at unsurveyed airfields, (Proc. Int. Congr. Aeronaut. Sci., Brisbane, Australia), 2012, pp. 3346-3364.
  5. C. T. Theodore and M. B. Tischler, Precision autonomous landing adaptive control experiment (PALACE), (Proc. 25th Army Sci. Conf., Orlando, FL, USA), 2006.
  6. S. Yang, J. Ying, Y. Lu, and Z. Li, Precise quadrotor autonomous landing with SRUKF vision perception, (Proc. IEEE ICRA, IEEE, Seattle, WA, USA), 2015, pp. 2196-2201.
  7. T. G. Carreia, Quadcopter automatic landing on a docking station, M.S. thesis, Electrical and Computer Engineering, Tecnico Lisboa, Portugal, 2013.
  8. W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Y. Fu, and A. C. Berg, SSD: single shot multibox detector, (Proc. Eur. Conf. Comput. Vision, Springer, Amsterdam, The Netherlands), 2016, pp. 21-37.
  9. J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, You only look once: unified, real-time object detection, 2015. arXiv preprint. DOI 10.48550/arXiv.1506.02640
  10. European Helicopter Safety Team, EHEST Leaflet HE 01: Safety Consideration, EASA, Cologne, Germany, 2010.
  11. European Helicopter Safety Team, EHEST Leaflet HE 03 Helicopter Off Airfield Landing Sites Operations, EASA, Cologne, Germany, 2012.
  12. K. Song, H. Yeo, and J. H. Moon, Approach control concepts and optimal vertiport airspace design for urban air mobility (UAM) operation, Int. J. Aeronaut. Space Sci. 22 (2021), no. 4, 982-994. https://doi.org/10.1007/s42405-020-00345-9
  13. K. Song, Optimal vertiport airspace and approach control strategy for urban air mobility (UAM), Sustainability 15 (2022), no. 1, 437. DOI 10.3390/su15010437
  14. J. Park, I. Kim, J. Suk, and S. Kim, Trajectory optimization for takeoff and landing phase of UAM considering energy and safety, Aerosp. Sci. Technol. 140 (2023), 108489. DOI 10.1016/j.ast.2023.108489
  15. D. Choi, D. Kim, and K. Lee, Collision avoidance of unmanned aerial vehicles in an urban environment, (Proc. IEEENatl. Aerosp. Electron. Conf., IEEE, Dayton, OH, USA), 2021, pp. 25-32.
  16. B. Zhou, F. Gao, L. Wang, C. Liu, and S. Shen, Robust and efficient quadrotor trajectory generation for fast autonomous flight, IEEE Robot. Automat. Let. 4 (2019), 3529-3536. https://doi.org/10.1109/LRA.2019.2927938
  17. S. Jung, H. Lee, D. H. Shim, and A. A. Agha-mohammadi, Collision-free local planner for unknown subterranean navigation, ETRI J. 43 (2021), 580-593. https://doi.org/10.4218/etrij.2021-0087
  18. Y. Hong, S. Kim, Y. Kim, and J. Cha, Quadrotor path planning using A* search algorithm and minimum snap trajectory generation, ETRI J. 43 (2021), 1013-1023. https://doi.org/10.4218/etrij.2020-0085
  19. X. Zhou, Z. Wang, H. Ye, C. Xu, and F. Gao, EGO-Planner: an ESDF-free gradient-based local planner for quadrotors, IEEE Robot. Automat. Let. 6 (2021), 478-485. https://doi.org/10.1109/LRA.2020.3047728
  20. J. Zhang, C. Hu, R. G. Chadha, and S. Singh, Falco: fast likelihood-based collision avoidance with extension to humanguided navigation, J. Field Robot. 37 (2020), 1300-1313. https://doi.org/10.1002/rob.21952
  21. S. Primatesta, A. Osman, and A. Rizzo, MP-RRT#: a model predictive sampling-based motion planning algorithm for unmanned aircraft system, J. Intell. Robot. Syst. 103 (2021), 59.
  22. Z. Zheng, T. R. Bewley, and F. Kuester, Point cloud-based targetoriented 3D path planning for UAVs, (Int. Conf. Unmanned Aircr. Syst. (ICUAS), IEEE, Athens, Greece), 2020, pp. 790-798.
  23. A. Hinas, J. M. Roberts, and F. Gonzalez, Vision-based target finding and inspection of a ground target using a multirotor UAV system, J. Pattern Recog. Let. 17 (2017), 2929.
  24. H. Choi, M. Geeves, B. Alsalam, and F. Gonzalez, Open source computer-vision based guidance system for UAVs on-board decision making, (Proc. IEEE Aerosp. Conf., IEEE, Big Sky, MT, USA), 2016, pp. 1-5.
  25. I. Borshchova and S. O'Young, Marker-guided auto-landing on a moving platform, Int. J. Intell. Unmanned Sys. 5 (2017), 28-42. https://doi.org/10.1108/IJIUS-10-2016-0008
  26. A. R. Vetrella, I. Sa, M. Popovic, R. Khanna, J. Nieto, G. Fasano, D. Accardo, and R. Siegwart, Improved tau-guidance and vision-aided navigation for robust autonomous landing of UAVs, (Proc. Conf. Field Serv. Rob., Springer, Zurich, Switzerland), 2017.
  27. A. Gautam, P. B. Sujit, and S. Saripalli, Autonomous quadrotor landing using vision and pursuit guidance, IFAC-PapersOnLine 50 (2017), 10501-10506. https://doi.org/10.1016/j.ifacol.2017.08.1982
  28. J. Kim, Y. Jung, D. Lee, and D. H. Shim, Outdoor autonomous landing on a moving platform for quadrotors using an omnidirectional camera, (Proc. Int. Conf. Unmanned Aircr. Syst. (ICUAS), IEEE, Orlando, FL, USA), 2014, pp. 1243-1252.
  29. I. V. Thiang and H. Tun, Vision-based object tracking algorithm with AR. Drone, Int. J. Scient. Technol. Res. 5 (2016), 135-139.
  30. O. Araar, N. Aouf, and I. Vitanov, Vision based autonomous landing of multirotor UAV on moving platform, J. Intell. Robot. Sys. 85 (2017), 369-384. https://doi.org/10.1007/s10846-016-0399-z
  31. H. Lee, S. Jung, and D. H. Shim, Vision-based UAV landing on the moving vehicle, (Proc. Int. Conf. Unmanned Aircr. Syst. (ICUAS), IEEE, Arlington, VA, USA), 2016, pp. 1-7.
  32. S. Jung, J. Koo, K. Jung, H. Kim, and H. Myung, Vision-based autonomous landing system of an unmanned aerial vehicle on a moving vehicle, J. Korea Robot. Soc. 11 (2016), 262-269. https://doi.org/10.7746/jkros.2016.11.4.262
  33. H. Lee, D. Lee, and D. H. Shim, Receding horizon-based RRT* RRT* algorithm for a UAV real-time path planner, (Proc. AIAA Infotech @1 Aerosp., American Institute of Aeronautics and Astronautics, Grapevine, TX, USA), 2017, pp. 676.