• Title/Summary/Keyword: Autonomous exploration

Search Result 65, Processing Time 0.024 seconds

An Optimal Path Planning of the Autonomous Guided Vehicle in the Environment with Dynamic Obstacles (동적 장애물 환경에서 자율운송장치의 최적 경로 계획)

  • Lee, Yun-Bae
    • The Transactions of the Korea Information Processing Society
    • /
    • v.2 no.3
    • /
    • pp.343-353
    • /
    • 1995
  • The path navigation of autonomous guided vehicle(AGV) or autonomous mobile robot(AMR) assumed that the environment was completely known and the obstacles were fixed. So that, in an environment only partly known or not known at all, the previous works were not successful since the path exploration techniques involved in the work were neither directly applicable nor extensible. In order to improve such problems, this paper was adopted the quadtree technique and proposed the algorithm for an optimal path planning autonomously in an environment and proved a validity through a simulation.

  • PDF

An autonomous radiation source detection policy based on deep reinforcement learning with generalized ability in unknown environments

  • Hao Hu;Jiayue Wang;Ai Chen;Yang Liu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.285-294
    • /
    • 2023
  • Autonomous radiation source detection has long been studied for radiation emergencies. Compared to conventional data-driven or path planning methods, deep reinforcement learning shows a strong capacity in source detection while still lacking the generalized ability to the geometry in unknown environments. In this work, the detection task is decomposed into two subtasks: exploration and localization. A hierarchical control policy (HC) is proposed to perform the subtasks at different stages. The low-level controller learns how to execute the individual subtasks by deep reinforcement learning, and the high-level controller determines which subtasks should be executed at the current stage. In experimental tests under different geometrical conditions, HC achieves the best performance among the autonomous decision policies. The robustness and generalized ability of the hierarchy have been demonstrated.

Study on Exploration Method of Seabed Around Heuksando Using Hover Drones (수면호버링 드론을 이용한 흑산도 해저지형 탐사 기법 연구)

  • Kim, Hyeong-Gyun;Lee, Young-suk
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.1
    • /
    • pp.102-110
    • /
    • 2020
  • This study covers exploration of seabed around Heuksando Island using hover drones. To do so, we inspected the terrain of the island and set autonomous flight waypoints on each area of the island's shores. Next, we designated seabed scan radius for drones. Then the drones fitted with laser sensor hover autonomously on their assigned area and acquire seabed data. Finally, we match the seabed data on all areas according to GPS. Our final goal is to make immersive VR maritime cultural map based on 『Jasan Urbo』.

Real-time Graph Search for Space Exploration (공간 탐사를 위한 실시간 그래프 탐색)

  • Choi, Eun-Mi;Kim, In-Cheol
    • Journal of Intelligence and Information Systems
    • /
    • v.11 no.1
    • /
    • pp.153-167
    • /
    • 2005
  • In this paper, we consider the problem of exploring unknown environments with a mobile robot or an autonomous character agent. Traditionally, research efforts to address the space exploration problem havefocused on the graph-based space representations and the graph search algorithms. Recently EXPLORE, one of the most efficient search algorithms, has been discovered. It traverses at most min$min(mn, d^2+m)$ edges where d is the deficiency of a edges and n is the number of edges and n is the number of vertices. In this paper, we propose DFS-RTA* and DFS-PHA*, two real-time graph search algorithms for directing an autonomous agent to explore in an unknown space. These algorithms are all built upon the simple depth-first search (DFS) like EXPLORE. However, they adopt different real-time shortest path-finding methods for fast backtracking to the latest node, RTA* and PHA*, respectively. Through some experiments using Unreal Tournament, a 3D online game environment, and KGBot, an intelligent character agent, we analyze completeness and efficiency of two algorithms.

  • PDF

Multi-Agent Rover System with Blackboard Architecture for Planetary Surface Soil Exploration (행성 표면탐사를 위한 블랙보드 구조를 가진 멀티에이전트 루버 시스템)

  • De Silva, K. Dilusha Malintha;Choi, SeokGyu;Kim, Heesook
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.2
    • /
    • pp.243-253
    • /
    • 2019
  • First steps of Planetary exploration are usually conducted with the use of autonomous rovers. These rovers are capable of finding its own path and perform experiments about the planet's surface. This paper makes a proposal for a multi-agent system which effectively take the advantage of a blackboard system for share knowledge and effort of each agent. Agents use Reactive Model with the combination of Belief Desire Intension (BDI) Model and also use a Path Finding Algorithm for calculate shortest distance and a path for travel on the planet's surface. This approach can perform a surface exploration on a given terrain within a short period of time. Information which are gathered on the blackboard are used to make an output with detailed surface soil variance results. The developed Multi-Agent system performed well with different terrain sizes.

Implementation of Autonomous Speed-controlled Exploration Robot using Weather Information (날씨 정보를 이용한 자율 속도 제어 탐사로봇 구현)

  • Sang, Young-Kyun;Son, Seong-Dong;Lee, Jung-Moon;Kim, Dong-Hoi
    • Journal of Digital Contents Society
    • /
    • v.19 no.5
    • /
    • pp.1011-1019
    • /
    • 2018
  • Existing exploration robot is able to control its speed using technologies such as the remote control and deep learning. However its speed control method using weather information has not been proposed. To overcome the problem of conventional methods without using the weather information which is an useful ordinary life information, this paper proposes a new speed control method of exploration robot using weather information gathered from RSS service which is offered without cost by the Meteorological Agency. The exploration robot implemented in this paper is controled by the remote control through the TCP/IP communication and provides real-time real spot figure gathered from its camera sensor within the range of WiFi. Additionally, according to the weather information from URL of the Meteorological Agency, the implemented exploration robot autonomously controls it speed. The correct performance of the proposed method is verified by the experimental measurement data of its speed according to the precipitation probability and wind speed in this paper.

Introduction to Submarine Power Cable Detection Technology (해저 전력 케이블 탐지 기술 소개)

  • Daechul Kim;Hyeji Chae;Wookeen Chung;ChangBeom Yun;Jong Hyun Kim;Jeonghun Kim;Sungryul Shin
    • Geophysics and Geophysical Exploration
    • /
    • v.27 no.1
    • /
    • pp.57-68
    • /
    • 2024
  • Offshore wind power is increasingly regarded as a viable solution for reducing greenhous emissions due to the construction of wind farms and their superior power generation efficiency. Submarine power cables play a crucial role in transmitting the electricity generated offshore to land. To monitor cables and identify points of failure, analyzing the location or depth of burial of submarine cables is necessary. This study reviewed the technology and research for detecting submarine power cables, which were categorized into seismic/acoustic, electromagnetic, and magnetic exploration. Seismic/acoustic waves are primarily used for detecting submarine power cables by installing equipment on ships. Electromagnetic and magnetic exploration detects cables by installing equipment on unmanned underwater vehicles, including autonomous underwater vehicles (AUV) and remotely operated vihicles (ROV). This study serves as a foundational resource in the field of submarine power cable detection.

Operation Method For AMR(Autonomous Mobile Robot) Using Petri Net (페트리넷을 이용한 자율 이동로봇의 운용)

  • 이석주;이병주;박귀태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.400-400
    • /
    • 2000
  • This paper purposed that verify the validity of Petri Net method for control progressive increase of system complexity, before extend the realized single robot system to multi-robot system. An autonomous mobile robot(AMR) needs decision making, motion control, path planning, tracking a path, obstacle avoidance, and sensor fusion, to complete its task. An AMR integrates and operates these technics through a consistent command system. An error in a command hierarchy which is like duplication or omission of a control command hierarchy for each module results in serious problems. This paper minimizes the error by modeling each module and whole system using Petri Net graphical representation and applies it to the exploration task of an AMR

  • PDF

Dynamics modeling of a semi-submersible autonomous underwater vehicle with a towfish towed by a cable

  • Park, Jinmo;Kim, Nakwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.2
    • /
    • pp.409-425
    • /
    • 2015
  • In this paper, we employ a dynamics modeling method for investigating a multi-body dynamics system of semi-submersible autonomous underwater vehicles consisting of a towing vehicle operated near the water surface, a tow cable, and a towfish. The towfish, which is towed by a marine cable for the purposes of exploration or mine hunting, is modeled with a Six-Degree-of-Freedom (6-DOF) equation of motion that reflects its hydrodynamics characteristics. The towing cable, which can experience large displacements and deformations, is modeled using an absolute nodal coordinate formulation. To reflect the hydrodynamic characteristics of the cable during motion, the hydrodynamic force due to added mass and the drag force are imposed. To verify the completeness of the modeling, a few simple numerical simulations were conducted, and the results confirm the physical plausibility of the model.

Developed Ethernet based image control system for deep-sea ROV (심해용 ROV를 위한 수중 원격 영상제어 시스템 개발)

  • Kim, Hyun-Hee;Jeong, Ki-Min;Park, Chul-Soo;Lee, Kyung-Chang;Hwang, Yeong-Yeun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.6
    • /
    • pp.389-394
    • /
    • 2018
  • Remotely operated vehicle(ROV) and autonomous underwater vehicle(AUV) have been used for underwater surveys, underwater exploration, resource harvesting, offshore plant maintenance and repair, and underwater construction. It is hard for people to work in the deep sea. Therefore, we need a vision control system of underwater submersible that can replace human eyes. However, many people have difficulty in developing a deep-sea image control system due to the deep sea special environment such as high pressure, brine, waterproofing and communication. In this paper, we will develop an Ethernet based remote image control system that can control the image mounted on ROV.