DOI QR코드

DOI QR Code

Developed Ethernet based image control system for deep-sea ROV

심해용 ROV를 위한 수중 원격 영상제어 시스템 개발

  • Kim, Hyun-Hee (Department of Control and Instrumentation Engineering, Pukyong National University) ;
  • Jeong, Ki-Min (Department of Control and Instrumentation Engineering, Pukyong National University) ;
  • Park, Chul-Soo (Soo Tech Co.) ;
  • Lee, Kyung-Chang (Department of Control and Instrumentation Engineering, Pukyong National University) ;
  • Hwang, Yeong-Yeun (Department of Control and Instrumentation Engineering, Pukyong National University)
  • 김현희 (부경대학교 제어계측공학과) ;
  • 정기민 (부경대학교 제어계측공학과) ;
  • 박철수 (수테크) ;
  • 이경창 (부경대학교 제어계측공학과) ;
  • 황용연 (부경대학교 제어계측공학과)
  • Received : 2018.09.28
  • Accepted : 2018.12.03
  • Published : 2018.12.31

Abstract

Remotely operated vehicle(ROV) and autonomous underwater vehicle(AUV) have been used for underwater surveys, underwater exploration, resource harvesting, offshore plant maintenance and repair, and underwater construction. It is hard for people to work in the deep sea. Therefore, we need a vision control system of underwater submersible that can replace human eyes. However, many people have difficulty in developing a deep-sea image control system due to the deep sea special environment such as high pressure, brine, waterproofing and communication. In this paper, we will develop an Ethernet based remote image control system that can control the image mounted on ROV.

Keywords

SOOOB6_2018_v21n6_389_f0001.png 이미지

Fig. 1 Classification of marine robot

SOOOB6_2018_v21n6_389_f0002.png 이미지

Fig. 2 Structure of image control system for deep sea

SOOOB6_2018_v21n6_389_f0003.png 이미지

Fig. 3. Maximum strain rate of HD camera pressure vessel

SOOOB6_2018_v21n6_389_f0004.png 이미지

Fig. 5 Design of pressure vessel for HD camera module

SOOOB6_2018_v21n6_389_f0005.png 이미지

Fig. 4. Maximum stress of HD camera pressure vessel

SOOOB6_2018_v21n6_389_f0006.png 이미지

Fig. 7 Design of pressure vessel for image control module

SOOOB6_2018_v21n6_389_f0007.png 이미지

Fig. 9 Software architecture of image control system

SOOOB6_2018_v21n6_389_f0008.png 이미지

Fig. 11 Image control module mounted on pressure vessel

SOOOB6_2018_v21n6_389_f0009.png 이미지

Fig. 12 GUI program

SOOOB6_2018_v21n6_389_f0010.png 이미지

Fig. 13 Video image of underwater

SOOOB6_2018_v21n6_389_f0011.png 이미지

Fig. 6 Pressure vessel for HD camera module

SOOOB6_2018_v21n6_389_f0012.png 이미지

Fig. 8 Pressure vessel for image control module

SOOOB6_2018_v21n6_389_f0013.png 이미지

Fig. 10 camera control module(L) & image conversion module(R)

Table 1. Analysis of HD camera pressure vessel

SOOOB6_2018_v21n6_389_t0001.png 이미지

References

  1. M. L. Seto L. Paull S. Saeedi, "Marine Robot Autonomy, Springer online, (2012)
  2. Roberts GN, Sutton R (eds) Advances in unmanned marine vehicles. Institution of Electrical Engineers, Michael Faraday House, Six Hills Way, Stevenage, UK, (2006)
  3. D. W. Yun, "Underwater robot technology," Journal of the KSME, Vol. 48, No. 12, pp. 10-12, (2018)
  4. P. M. Lee, B. H. Jun, H. Baek. B. H. Kim, H. W. Shim, J. Y. Park, S. Y. Yoo, W. Y. Jeong, S.H. Baek, W. S. Kim, "Explorations of Hydrothermal Vents in Southern Mariana Arc Submarine Volcanoes using ROV Hemire," Journal of Ocean Engineering and Technology, Vol. 30, No. 5, pp. 389-399, (2016) https://doi.org/10.5574/KSOE.2016.30.5.389