• 제목/요약/키워드: Autonomous emergency brake

검색결과 5건 처리시간 0.019초

자율주행 셔틀버스의 통신 정보 융합 기반 충돌 위험 판단 알고리즘 개발 (Development of I2V Communication-based Collision Risk Decision Algorithm for Autonomous Shuttle Bus)

  • 이승민;이창형;박만복
    • 자동차안전학회지
    • /
    • 제11권3호
    • /
    • pp.19-29
    • /
    • 2019
  • Recently, autonomous vehicles have been studied actively. Autonomous vehicles can detect objects around them using their on board sensors, estimate collision probability and maneuver to avoid colliding with objects. Many algorithms are suggested to prevent collision avoidance. However there are limitations of complex and diverse environments because algorithm uses only the information of attached environmental sensors and mainly depends on TTC (time-to-Collision) parameter. In this paper, autonomous driving algorithm using I2V communication-based cooperative sensing information is developed to cope with complex and diverse environments through sensor fusion of objects information from infrastructure camera and object information from equipped sensors. The cooperative sensing based autonomous driving algorithm is implemented in autonomous shuttle bus and the proposed algorithm proved to be able to improve the autonomous navigation technology effectively.

차량용 탑승자 보호 기술 (Automotive Occupant Protection Technologies)

  • 이성수
    • 전기전자학회논문지
    • /
    • 제22권1호
    • /
    • pp.223-226
    • /
    • 2018
  • 최근 차량 사고로부터 탑승자를 보호하기 위해서 다양한 안전 기술이 집중적으로 개발되고 있다. 본 논문에서는 잠김 방지 브레이크 시스템, 견인력 제어 시스템, 제동력 배분 시스템, 전자 주행 안정 장치, 자동 긴급 브레이크, 에어백, 좌석벨트 프리텐셔너, 능동형 헤드레스트 등 다양한 차량용 탑승자 보호 기술을 살펴보고, 각 기술의 동작원리 및 구현에 대해 설명한다.

무인 자율 주행 차량 시스템 설계 및 제어에 관한 연구 (A Study on the Design and Control Method for Unmanned Ground Vehicle System)

  • 문희창;박명욱;김정하
    • 제어로봇시스템학회논문지
    • /
    • 제16권5호
    • /
    • pp.446-455
    • /
    • 2010
  • The research presented covers the design and control method of unmanned ground vehicle (UGV). An electric vehicle is used and is driven by DC motor. The power system on the UGV has been adjusted and actuators have been installed for steering and brake automation. A toggle switch is implemented to easily switch between manual and autonomous states. The UGV state is monitored by a velocity sensor, as well as steering and brake position sensors. An emergency stop device was designed and installed to quickly and safely stop the UGV. Different control methods, including the PID controller, were studied for improved steering responsiveness, and results were confirmed through experimentation. Satisfactory performance was achieved and several possible areas of future research have arisen.

작업자 안전을 고려한 무인 폐기물 수거차 시스템 개발 (Development of Unmanned Vehicles System for Waste Collection Considering Worker Safety)

  • 정민권;김상호;이상무;원대희;소병록;이상준
    • 로봇학회논문지
    • /
    • 제17권4호
    • /
    • pp.477-483
    • /
    • 2022
  • In this paper, we propose waste collection vehicle system with a safety device for worker safety and an autonomous driving function. The steering system is applied as MDPS (Motor Drive Power Steering) system to control the waste collection vehicle of the internal combustion engine. Safety-related errors is prevented through redundancy brake of the integrated system and the control braking system. In order to ensure safety between workers and waste collection vehicles, work guidelines and safety devices for emergency stop in case of danger are applied to vehicles. In addition, this research is conducted on improving the working efficiency through vehicle condition monitoring system and a short-range control system for field test. This research is aimed to secure stability through demonstration and contribute to the industrialization of unmanned waste collection vehicles.

실사고에서 AEB의 거리감지범위에 따른 승객 상해 심각도 분석 (An Evaluation of Occupant Injury Severity Based on Distance Detection Range of AEB in a Real Accident)

  • 박지양;윤영한
    • 자동차안전학회지
    • /
    • 제11권3호
    • /
    • pp.7-12
    • /
    • 2019
  • AEB (Autonomous Emergency Braking system), a system in which vehicles automatically recognize forward objects or pedestrians and actively brake when forward collisions are expected, has been mandated by NHTSA (National Highway Traffic Safety Administration) and IIHS (Insurance Institute for Highway Safety) for all vehicles sell in the United States since 2022, and AEB research is also actively underway in korea. In this study, it can be confirmed that the passenger injury is reduced according to the AEB detection distance when it is assumed that the AEB is mounted in the actual event generated from KIDAS (Korea New Car Assessment Program) data through various analysis programs.