• Title/Summary/Keyword: Autonomous driving technology

Search Result 388, Processing Time 0.035 seconds

A Study on Functions and Characteristics of Level 4 Autonomous Vehicles (레벨 4 자율주행자동차의 기능과 특성 연구)

  • Lee, Gwang Goo;Yong, Boojoong;Woo, Hyungu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.4
    • /
    • pp.61-69
    • /
    • 2020
  • As a sales volume of autonomous vehicle continually grows up, regulations on this new technology are being introduced around the world. For example, safety standards for the Level 3 automated driving system was promulgated in December 2019 by the Ministry of Land, Infrastructure and Transport of Korean government. In order to promote the development of autonomous vehicle technology and ensure its safety simultaneously, the regulations on the automated driving systems should be phased in to keep pace with technology progress and market expansion. However, according to SAE J3016, which is well known to classify the level of the autonomous vehicle technologies, the description for classification is rather abstract. Therefore it is necessary to describe the automated driving system in more detail in terms of the 'Level.' In this study, the functions and characteristics of automated driving system are carefully classified at each level based on the commentary in the Informal Working Group (IWG) of the UN WP29. In particular, regarding the Level 4, technical issues are characterized with respect to vehicle tasks, driver tasks, system performance and regulations. The important features of the autonomous vehicles to meet Level 4 are explored on the viewpoints of driver replacement, emergency response and connected driving performance.

Development and Validation of Safety Performance Evaluation Scenarios of Autonomous Vehicle based on Driving Data (주행데이터 기반 자율주행 안전성 평가 시나리오 개발 및 검증)

  • Lim, Hyeongho;Chae, Heungseok;Lee, Myungsu;Lee, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.9 no.4
    • /
    • pp.7-13
    • /
    • 2017
  • As automotive industry develops, the demand for increasing traffic safety is growing. Lots of researches about vehicle convenience and safety technology have been implemented. Now, the autonomous driving test is being conducted all over the world, and the autonomous driving regulations are also being developed. Autonomous vehicles are being commercialized, but autonomous vehicle safety has not been guaranteed yet. This paper presents scenarios that assess the safety of autonomous vehicles by identifying the minimum requirements to ensure safety for a variety of situations on highway. In assessing driving safety, seven scenarios were totally selected. Seven scenarios were related to lane keeping and lane change performance in certain situations. These scenarios were verified by analyzing the driving data acquired through actual vehicle driving. Data analysis was implemented via computer simulation. These scenarios are developed based on existing ADAS evaluation and simulation of autonomous vehicle algorithm. Also Safety evaluation factors are developed based on ISO requirements, other papers and the current traffic regulations.

Traffic Accidents Scenarios Based on Autonomous Vehicle Functional Safety Systems (자율주행차량 기능안전 시스템 기반 사고 시나리오 도출)

  • Heesoo Kim;Yongsik You;Hyorim Han;Min-je Cho;Tai-jin Song
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.6
    • /
    • pp.264-283
    • /
    • 2023
  • Unlike conventional vehicle traffic accidents, autonomous vehicles traffic accidents can be caused by various factors, including technical problems, the environment, and driver interaction. With the future advances in autonomous driving technology, new issues are expected to emerge in addition to the existing accident causes, and various scenario-based approaches are needed to respond to them. This study developed autonomous vehicle traffic accident scenarios by collecting autonomous driving accident reports, CA DMV collision reports, autonomous driving mode disengagement reports, and autonomous driving actual accident videos. The scenarios were derived based on the functional safety system failure modes of ISO 26262 and attempted to reflect the various issues of autonomous driving functions. The autonomous vehicle scenarios derived through this study are expected to play an essential role in preventing and preparing for various autonomous vehicle traffic accidents in the future and improving the safety of autonomous driving technology.

A Competitiveness Analysis of Autonomous Vehicle through Patent Analysis (특허분석을 통한 자율주행 분야의 경쟁력 분석)

  • Paek, Hyun-jo;Leem, Choon-seoung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.173-176
    • /
    • 2021
  • Autonomous-driving is a major technology that leads to the fourth industrial revolution. Due to recent advances in autonomous-driving technologies and deregulation, it is expected that commercialization of autonomous vehicle with level 3 or higher will begin in earnest. This research aims to evaluate the competitiveness of technology through patent analysis in autonomous driving field. In this study, patent trends were analyzed and patent indicators were analyzed for patents in Korea, the United States, Japan, and Europe that were published and registered until July 2021. Through this, it is going to identify detailed technologies that need to be focused on in order to be competitive in autonomous driving technologies and diagnose Korea's national competitiveness.

  • PDF

Operational Design Domain for Testing of Autonomous Shuttle on Arterial Road (도시부 자율주행셔틀 실증을 위한 운행설계영역 분석: 안양시를 중심으로)

  • Kim, Hyungjoo;Lim, Kyungil;Kim, Jaehwan;Son, Woongbee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.2
    • /
    • pp.135-148
    • /
    • 2020
  • The ongoing development of autonomous driving-related technology may cause different kinds of accidents while testing new changes. As a result, more information on ODD suitable for the domestic road environment will be necessary to prevent safety accidents. Besides, implementation of the Autonomous Vehicle Act will increase autonomous driving demonstrations on roads currently in use. This study describes an ODD for demonstrating an autonomous driving shuttle in downtown areas. It addresses a possible scenario of autonomous driving around a downtown road in Anyang. Geometric, operational, and environmental factors are considered while maintaining a domestic road environment and safety. Autonomous driving shuttles are demonstrated in 30 nodes, each identified by node type and signal-communication. Link criteria are an autonomous driving restriction in 42 morning peak (8-9am) hours, 39 non-peak (12-13pm) hours, and 40 afternoon peak (18-19pm) hours. In the future, conclusions may be considered for preliminary safety assessments of roads where autonomous driving tests are performed.

Autonomous Vehicle Situation Information Notification System (자율주행차량 상황 정보 알림 시스템)

  • Jinwoo Kim;Kitae Kim;Kyoung-Wook Min;Jeong Dan Choi
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.5
    • /
    • pp.216-223
    • /
    • 2023
  • As the technology and level of autonomous vehicles advance and they drive in more diverse road environments, an intuitive and efficient interaction system is needed to resolve and respond to the situations the vehicle faces. The development of driving technology from the perspective of autonomous driving has the ultimate goal of responding to situations involving humans or more. In particular, in complex road environments where mutual concessions must be made, the role of a system that can respond flexibly through efficient communication methods to understand each other's situation between vehicles or between pedestrians and vehicles is important. In order to resolve the status of the vehicle or the situation being faced, the provision and method of information must be intuitive and the efficient operation of an autonomous vehicle through interaction with intention is required. In this paper, we explain the vehicle structure and functions that can display information about the situation in which the autonomous vehicle driving in a living lab can drive stably and efficiently in a diverse and complex environment.

A RLS-based Convergent Algorithm for Driving Characteristic Classification for Personalized Autonomous Driving (자율주행 개인화를 위한 순환 최소자승 기반 융합형 주행특성 구분 알고리즘)

  • Oh, Kwang-Seok
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.9
    • /
    • pp.285-292
    • /
    • 2017
  • This paper describes a recursive least-squares based convergent algorithm for driving characteristic classification for personalized autonomous driving. Recently, various researches on autonomous driving technology have been conducted for level 4 fully autonomous driving. In order for commercialization of the autonomous vehicle, personalized autonomous driving is required to minimize passenger's insecureness to the autonomous vehicle. To address this problem. this study proposes mathematical model that represents driving characteristics and recursive least-squares based algorithm that can estimate the defined characteristics. The actual data of two drivers has been used to derive driving characteristics and the hypothesis testing method has been used to classify two drivers. It is shown that the proposed algorithms can derive driving characteristics and classify two drivers reasonably.

A Study on Position Correction Sign for Autonomous Driving Vehicles (자율주행 자동차를 위한 측위 보정 표지 연구)

  • Young-Jae JEON;Chul-Woo PARK;Sang-Yeon WON;Jun-Hyuk LEE
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.26 no.4
    • /
    • pp.161-172
    • /
    • 2023
  • Autonomous driving vehicles recognize the surroundings through various sensors mounted on the vehicle and control the vehicle based on the collected information. The level of autonomous driving technology is improving due to the development of sensor technology and algorithms that process collected data, but the implementation of perfect autonomous driving technology has not been achieved. To overcome these limitations, through autonomous cooperative driving centered on infrastructure. In this study, developed a position correction sign that provides a reference for positioning of autonomous vehicles. First of all, an analysis was performed on the current status of positioning technology for autonomous driving. And measure the number of point clouds for the 1st sample consisting of two square reflective surfaces and 2nd sample that increased the vertical length of each reflective surface. Experimental results show that both primary and secondary products are installed at least 15 m apart It could be recognized as a sensor, and it was confirmed that the secondary production that increased the length of the top and bottom had a higher number of point clouds than the primary production and better expressed the shape of the facility.

Reliability Verification of Secured V2X Communication for Cooperative Automated Driving (자율협력주행을 위한 V2X 보안통신의 신뢰성 검증)

  • Jung, Han-gyun;Lim, Ki-taeg;Shin, Dae-kyo;Yoon, Sang-hun;Jin, Seong-keun;Jang, Soo-hyun;Kwak, Jae-min
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.5
    • /
    • pp.391-399
    • /
    • 2018
  • V2X communication is a technology in which a vehicle exchanges information with various entities such as other vehicles, infrastructure, networks, pedestrians, etc. through a wired or wireless network. Recently, V2X communication technology has been steadily developed and recently it has played an important role in autonomous cooperation driving technology combined with autonomous vehicle technology. Autonomous vehicles can utilize the external information received via V2X communication to extend the recognition range of existing sensors and to support more safe and natural autonomous driving. In order to operate these autonomous cooperative vehicles on public roads, the security and reliability of autonomous V2X communication should be verified in advance. In this paper, we present test scenarios and test procedures of secure V2X communication for cooperative automated driving and present verification results.

Popularization of Autonomous Vehicles and Arbitrability of Defects in Manufacturing Products (자율주행차의 대중화와 제조물하자에 관한 중재가능성)

  • Kim, Eun-Bin;Ha, Choong-Lyong;Kim, Eung-Kyu
    • Journal of Arbitration Studies
    • /
    • v.31 no.4
    • /
    • pp.119-136
    • /
    • 2021
  • Due to the restriction of movement caused by the Corona epidemic and the expansion of the "big face" through human distance, the "unmanned system" based on artificial intelligence and the Internet of Things has been widely used in modern life. "Self-driving," one of the transportation systems based on artificial technology, has taken the initiative in the transportation system as the spread of Corona has begun. Self-driving technology eliminates unnecessary contact and saves time and manpower, which can significantly impact current and future transportation. Accidents may occur, however, due to the performance of self-driving technology during transportation albeit the U.S. allows ordinary people to drive automatically through experimental operations, and the product liability law will resolve the dispute. Self-driving has become popular in the U.S. after the experimental stage, and in the event of a self-driving accident, product liability should be applied to protect drivers from complicated self-driving disputes. The purpose of this paper is to investigate whether disputes caused by defects in ordinary cars can be resolved through arbitration through U.S. precedents and to investigate whether disputes caused by defects in autonomous cars can be arbitrated.