• 제목/요약/키워드: Autonomous Underwater Vehicles(AUV)

검색결과 58건 처리시간 0.031초

두 개의 초음파 거리계를 이용한 관성센서 기반의 의사 장기선 (Pseudo-LBL) 복합항법 알고리듬 (Pseudo Long Base Line (LBL) Hybrid Navigation Algorithm Based on Inertial Measurement Unit with Two Range Transducers)

  • 이판묵;전봉환;홍석원;임용곤;양승일
    • 한국해양공학회지
    • /
    • 제19권5호
    • /
    • pp.71-77
    • /
    • 2005
  • This paper presents an integrated underwater navigational algorithm for unmanned underwater vehicles, using additional two-range transducers. This paper proposes a measurement model, using two range measurements, to improve the performance of an IMU-DVL (inertial measurement unit - Doppler velocity log) navigation system for long-time operation of underwater vehicles, excluding DVL measurement. Extended Kalman filter was adopted to propagate the error covariance, to update the measurement errors, and to correct the state equation when the external measurements are available. Simulation was conducted with the 6-d.o.f nonlinear numerical model of an AUV in lawn-mowing survey mode, at current flaw, where the velocity information is unavailable. Simulations illustrate the effectiveness of the integrated navigation system, assisted by the additional range measurements without DVL sensing.

The effects of the circulating water tunnel wall and support struts on hydrodynamic coefficients estimation for autonomous underwater vehicles

  • Huang, Hai;Zhou, Zexing;Li, Hongwei;Zhou, Hao;Xu, Yang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.1-10
    • /
    • 2020
  • This paper investigates the influence of the Circulating Water Channel (CWC) side wall and support struts on the hydrodynamic coefficient prediction for Autonomous Underwater Vehicles (AUVs) experiments. Computational Fluid Dynamics (CFD) method has been used to model the CWC tests. The hydrodynamic coefficients estimated by CFD are compared with the prediction of experiments to verify the accuracy of simulations. In order to study the effect of side wall on the hydrodynamic characteristics of the AUV in full scale captive model tests, this paper uses the CWC non-dimensional width parameters to quantify the correlation between the CWC width and hydrodynamic coefficients of the chosen model. The result shows that the hydrodynamic coefficients tend to be constant with the CWC width parameters increasing. Moreover, the side wall has a greater effect than the struts.

A New Approach to the Design of An Adaptive Fuzzy Sliding Mode Controller

  • Lakhekar, Girish Vithalrao
    • International Journal of Ocean System Engineering
    • /
    • 제3권2호
    • /
    • pp.50-60
    • /
    • 2013
  • This paper presents a novel approach to the design of an adaptive fuzzy sliding mode controller for depth control of an autonomous underwater vehicle (AUV). So far, AUV's dynamics are highly nonlinear and the hydrodynamic coefficients of the vehicles are difficult to estimate, because of the variations of these coefficients with different operating conditions. These kinds of difficulties cause modeling inaccuracies of AUV's dynamics. Hence, we propose an adaptive fuzzy sliding mode control with novel fuzzy adaptation technique for regulating vertical positioning in presence of parametric uncertainty and disturbances. In this approach, two fuzzy approximator are employed in such a way that slope of the linear sliding surface is updated by first fuzzy approximator, to shape tracking error dynamics in the sliding regime, while second fuzzy approximator change the supports of the output fuzzy membership function in the defuzzification inference module of fuzzy sliding mode control (FSMC) algorithm. Simulation results shows that, the reaching time and tracking error in the approaching phase can be significantly reduced with chattering problem can also be eliminated. The effectiveness of proposed control strategy and its advantages are indicated in comparison with conventional sliding mode control FSMC technique.

Intelligent 3D Obstacles Recognition Technique Based on Support Vector Machines for Autonomous Underwater Vehicles

  • Mi, Zhen-Shu;Kim, Yong-Gi
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제9권3호
    • /
    • pp.213-218
    • /
    • 2009
  • This paper describes a classical algorithm carrying out dynamic 3D obstacle recognition for autonomous underwater vehicles (AUVs), Support Vector Machines (SVMs). SVM is an efficient algorithm that was developed for recognizing 3D object in recent years. A recognition system is designed using Support Vector Machines for applying the capabilities on appearance-based 3D obstacle recognition. All of the test data are taken from OpenGL Simulation. The OpenGL which draws dynamic obstacles environment is used to carry out the experiment for the situation of three-dimension. In order to verify the performance of proposed SVMs, it compares with Back-Propagation algorithm through OpenGL simulation in view of the obstacle recognition accuracy and the time efficiency.

The design method research of the control system for Autonomous Underwater Vehicle (AUV) using Linear Matrix Inequality (LMI)

  • Nasuno, Youhei;Shimizu, Etsuro;Aoki, Taro;Yomamoto, Ikuo;Hyakudome, Tadahiro;Tsukioka, Satoshi;Yoshida, Hiroshi;Ishibashi, Shojiro;Ito, Masanori;Sasamoto, Ryoko
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1060-1065
    • /
    • 2005
  • An Independent Administrative Corporation Japan Agency for Marine-Earth Science and Technology (JAMSTEC) is developing light-and-small Autonomous Underwater Vehicles (AUV)$^{1)}$, named 'MR-X1' (Marine Robot Experimental 1), which can cruise, investigate and observe by itself without human's help. In this paper, we consider the motion control problem of 'MR-X1' and derive a controller. Since the dynamic property of 'MR-X1' is changed by the influence of the speed, the mathematical model of 'MR-X1' becomes the nonlinear model. In order to design a controller for 'MR-X1', we generally apply nonlinear control theories or linear control theories with some constant speed situation. If we design a controller by applying Linear Quadratic (LQ) optimal control theory, the obtained controller only compensates t e optimality at the designed speed situation, and does not compensate the stability at another speed situations. This paper proposes a controller design method using Linear Matrix Inequalities (LMIs)$^{2),3),4)}$, which can adapt the speed variation of 'MR-X1'. And examples of numerical analysis using our designed controller are shown.

  • PDF

LMI에 기초한 $H_{\infty}$ 서보제어를 이용한 AUV의 강인한 자동 심도 및 방향제어 (Robust Depth and Course Control of AUV Using LMI-based $H_{\infty}$ Servo Control)

  • 양승윤;김인수;이만형
    • 한국군사과학기술학회지
    • /
    • 제3권1호
    • /
    • pp.38-46
    • /
    • 2000
  • In this paper, robust depth and course controllers of AUV(autonomous underwater vehicles) using LMI-based H$_{\infty}$ servo control are proposed. The $H_{\infty}$ servo problem is modified to an $H_{\infty}$ control problem for the generalized plant that includes a reference input mode, and then a sub-optimal solution that satisfies a given performance criteria is calculated by LMI(Linear Matrix Inequality) approach. The robust depth and course controllers are designed to be satisfied the robust stability about the modeling error generated from the perturbation of the hydrodynamic coefficients and the robust tracking property under sea wave and tide disturbances. The performances of the designed controllers are evaluated by computer simulations, and these simulation results show the applicability of the proposed robust depth and course controller.

  • PDF

시험용 자율 무인 잠수정, ODIN-III의 새로운 시스템 소프트웨어 구조의 설계와 구현 및 실험 (Design, Implementation and Test of New System Software Architecture for Autonomous Underwater Robotic Vehicle, ODIN-III)

  • 최현택;김진현;여준구;김홍록;서일홍
    • 제어로봇시스템학회논문지
    • /
    • 제10권5호
    • /
    • pp.442-449
    • /
    • 2004
  • As underwater robotic vehicles (URVs) become attractive for more sophisticated underwater tasks, the demand of high performance in terms of accuracy and dexterity has been increased. An autonomous underwater robotic vehicle, ODIN (Omni-Directional Intelligent Navigator) was designed and built at the Autonomous Systems Laboratory of the University of Hawaii in 1991. Since 1991, various studies were conducted on ODIN and have contributed to the advancement in underwater robotics. Its refurbished model ODIN II was based on VxWorks in VMEbus. Recently, ODIN was born again as a PC based system, ODIN III with unique features such as new vehicle system software architecture with an objective-oriented concept, a graphical user interface, and an independent and modular structure using a Dynamic Linking Library (DLL) based on the Windows operating system. ODIN III software architecture offers an ideal environment where various studies for advanced URV technology can be conducted. This paper describes software architecture of ODIN III and presents initial experimental results of fine motion control on ODIN III.

수중 자율이동체의 장시간 수중항법 성능 개선을 위한 표준 수력학 모델 기반 속도 추정필터 설계 (Gertler-Hagen Hydrodynamic Model Based Velocity Estimation Filter for Long-term Underwater Navigation Without External Position Fix)

  • 이윤하;나원상;김광훈;안명환;이범직
    • 전기학회논문지
    • /
    • 제65권11호
    • /
    • pp.1868-1878
    • /
    • 2016
  • This paper proposes a novel velocity estimator for long-term underwater navigation of autonomous underwater vehicles(AUVs). Provided that an external position fix is not given, a viable goal in designing a underwater navigation algorithm is to reduce the divergence rate of position error only using the sporadic velocity information obtained from Doppler velocity log(DVL). For such case, the performance of underwater navigation eventually depends on accuracy and reliability of external velocity information. This motivates us to devise a velocity estimator which can drastically enhance the navigation performance even when the DVL measurement is unavailable. Incorporating the Gertler-Hagen hydrodynamics model of an AUV with the measurement models of velocity and depth sensors, the velocity estimator design problem is resolved using the extended Kalman filter. Different from the existing methods in which an AUV simulator is regarded as a virtual sensor, our approach is less sensitive to the model uncertainty often encountered in practice. This is because our velocity filter estimates the simulator errors with sensor aids and furthermore compensates these errors based on the indirect feedforward manner. Through the simulations for typical AUV navigation scenarios, the effectiveness of the proposed scheme is demonstrated.

무인자율수중운동체의 보정항법을 위한 축소된 오차 모델 (Reduced Error Model for Integrated Navigation of Unmanned Autonomous Underwater Vehicle)

  • 박용곤;강철우;이달호;박찬국
    • 제어로봇시스템학회논문지
    • /
    • 제20권5호
    • /
    • pp.584-591
    • /
    • 2014
  • This paper presents a novel aided navigation method for AUV (Autonomous Underwater Vehicles). The navigation system for AUV includes several sensors such as IMU (Inertial Measurement Unit), DVL (Doppler Velocity Log) and depth sensor. In general, the $13^{th}$ order INS error model, which includes depth error, velocity error, attitude error, and the accelerometer and gyroscope biases as state variables is used with measurements from DVL and depth sensors. However, the model may degrade the estimation performance of the heading state. Therefore, the $11^{th}$ INS error model is proposed. Its validity is verified by using a degree of observability and analyzing steady state error. The performance of the proposed model is shown by the computer simulation. The results show that the performance of the reduced $11^{th}$ order error model is better than that of the conventional $13^{th}$ order error model.

불확실성이 포함된 무인잠수정의 도킹 평가 알고리즘 (Docking Assessment Algorithm for AUVs with Uncertainties)

  • 천승재;서주노;정성훈
    • 한국항행학회논문지
    • /
    • 제23권5호
    • /
    • pp.352-360
    • /
    • 2019
  • 본 논문은 센서에 불확실성이 존재하는 무인잠수정에 대한 도킹 평가 알고리즘을 제안한다. 제안된 알고리즘은 상태평가와 확률평가 두 가지의 평가로 구성된다. 상태평가는 무인잠수정이 도킹스테이션에 접근하는 과정 중 심도제어를 통해 도킹스테이션과 동일한 수심에 도달하는데 발생 예상되는 전진거리와 실제 수평거리를 비교함으로써 심도 도달 가능 여부를, 무인잠수정의 최소선회반경으로 인한 접근 불가 영역과 도킹스테이션의 위치를 비교함으로써 충돌 회피를 위한 선회 동작 수행 여부를 확인한다. 상태평가를 만족하며 무인잠수정이 도킹스테이션에 일정 거리 이상 접근한 경우 확률평가를 수행하여 무인잠수정의 방향각과 도킹스테이션에 대한 상대위치, 그리고 센서 불확실성을 기반으로 도킹 성공확률을 산출한다. 최종적으로 산출된 도킹 성공확률을 설계된 문턱 값과 비교함으로써 도킹 수행 여부를 결정한다. Matlab 기반의 시뮬레이션을 통해 무인잠수정이 도킹스테이션에 접근하는 시나리오를 구성하여 제안하는 알고리즘의 유효성을 검증한다.