• Title/Summary/Keyword: Autonomous Underwater Vehicles(AUV)

Search Result 58, Processing Time 0.023 seconds

A Visual Servo Algorithm for Underwater Docking of an Autonomous Underwater Vehicle (AUV) (자율무인잠수정의 수중 도킹을 위한 비쥬얼 서보 제어 알고리즘)

  • 이판묵;전봉환;이종무
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.1
    • /
    • pp.1-7
    • /
    • 2003
  • Autonomous underwater vehicles (AUVs) are unmanned, underwater vessels that are used to investigate sea environments in the study of oceanography. Docking systems are required to increase the capability of the AUVs, to recharge the batteries, and to transmit data in real time for specific underwater works, such as repented jobs at sea bed. This paper presents a visual :em control system used to dock an AUV into an underwater station. A camera mounted at the now center of the AUV is used to guide the AUV into dock. To create the visual servo control system, this paper derives an optical flow model of a camera, where the projected motions of the image plane are described with the rotational and translational velocities of the AUV. This paper combines the optical flow equation of the camera with the AUVs equation of motion, and deriver a state equation for the visual servo AUV. Further, this paper proposes a discrete-time MIMO controller, minimizing a cost function. The control inputs of the AUV are automatically generated with the projected target position on the CCD plane of the camera and with the AUVs motion. To demonstrate the effectiveness of the modeling and the control law of the visual servo AUV simulations on docking the AUV to a target station are performed with the 6-dof nonlinear equations of REMUS AUV and a CCD camera.

Motion Control of an AUV (Autonomous Underwater Vehicle) Using Fuzzy Gain Scheduling (퍼지 게인 스케쥴링을 이용한 자율 무인 잠수정의 자세 제어)

  • Park, Rang-Eun;Hwang, Eun-Ju;Lee, Hee-Jin;Park, Mignon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.6
    • /
    • pp.592-600
    • /
    • 2010
  • The problem of motion control for AUV (Autonomous Underwater Vehicles) is addressed. The utilization of such robotic vehicles has gained an increasing importance in many marine activities. In this paper the objective is to describe how to design and apply FGS (Fuzzy Gain Scheduling) PD (Proportional Derivative) controller for an AUV (Autonomous Underwater Vehicle) to control the yaw and depth of the vehicle by keeping the path of the navigation to a desired point, and/or changing the path according to a set point.

System Idenification of an Autonomous Underwater Vehicle and Its Application Using Neural Network (신경회로망을 이용한 AUV의 시스템 동정화 및 응용)

  • 이판묵;이종식
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.131-140
    • /
    • 1994
  • Dynamics of AUV has heavy nonlinearities and many unknown parameters due to its bluff shape and low cruising speed. Intelligent algorithms, therefore, are required to overcome these nonlinearities and unknown system dynamics. Several identification techniques have been suggested for the application of control of underwater vehicles during last decade. This paper applies the neural network to identification and motion control problem of AUVs. Nonlinear dynamic systems of an AUV are identified using feedforward neural network. Simulation results show that the learned neural network can generate the motion of AUV. This paper, also, suggest an adaptive control scheme up-dates the controller weights with reference model and feedforward neural network using error back propagation.

  • PDF

The effect of vehicle velocity and drift angle on through-body AUV tunnel thruster performance

  • Saunders, Aaron;Nahon, Meyer
    • Ocean Systems Engineering
    • /
    • v.1 no.4
    • /
    • pp.297-315
    • /
    • 2011
  • New applications of streamlined Autonomous Underwater Vehicles require an AUV capable of completing missions with both high-speed straight-line runs and slow maneuvers or station keeping tasks. At low, or zero, forward speeds, the AUV's control surfaces become ineffective. To improve an AUV's low speed maneuverability, while maintaining a low drag profile, through-body tunnel thrusters have become a popular addition to modern AUV systems. The effect of forward vehicle motion and sideslip on these types of thrusters is not well understood. In order to characterize these effects and to adapt existing tunnel thruster models to include them, an experimental system was constructed. This system includes a transverse tunnel thruster mounted in a streamlined AUV. A 6-axis load cell mounted internally was used to measure the thrust directly. The AUV was mounted in Memorial University of Newfoundland's tow tank, and several tests were run to characterize the effect of vehicle motion on the transient and steady state thruster performance. Finally, a thruster model was modified to include these effects.

Visual Servoing Control of a Docking System for an Autonomous Underwater Vehicle (AUV)

  • Lee, Pan-Mook;Jeon, Bong-Hwan;Lee, Chong-Moo;Hong, Young-Hwa;Oh, Jun-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.109.5-109
    • /
    • 2002
  • Autonomous underwater vehicles (AUVs) are unmanned underwater vessels to investigate sea environments, oceanography and deep-sea resources autonomously. Docking systems are required to increase the capability of the AUVs to recharge the batteries and to transmit data in real time in underwater. This paper presents a visual servo control system for an AUV to dock into an underwater station with a camera. To make the visual servo control system , this paper derives an optical flow model of a camera mounted on an AUV, where a CCD camera is installed at the nose center of the AUV to monitor the docking condition. This paper combines the optical flow equation of the camera with the AUV's equation o...

  • PDF

An intelligent control system design for autonomous underwater vehicle (무인 수중운동체를 위한 지능제어시스템 설계)

  • Lee, Dong-Ik;Kwak, Dong-Hoon;Choi, Jung-Lak
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.3
    • /
    • pp.227-237
    • /
    • 1997
  • Autonomous Underwater Vehicles(AUVs) have become an important tool for various purposes in subsea: inspection, recovery, construction, etc., and the development of autonomous control system is luglay desirable- thete zffe many problems associated with designing the control system for AUV due to unknown underwater envimn-Tnent, the possibility of subsystem failures, and unpredictable changes in the dynamics of the vehicle. In this paper, an autonomous control system based on the intelligent control theory to enhance operation efficiency of the ALTV is presented. The control system has a hierarchical structure which consists of mission planning level, mission control level, navigation level, and execution level. The performance of the control system is investigated by computer simulation. The results show that the proposed control system can be applied successfully to the AUV in spite of the possibility of failures in the vehicle and the collision hazard in the sea environment.

  • PDF

A Study on the Motion Analysis and Design Optimization of a Ducted Type AUV (Autonomous Underwater Vehicle) by Using CFD (Computational Fluid Dynamics) Analysis (CFD 해석을 이용한 덕트형 자율무인잠수정의 운동해석 및 설계 최적화에 관한 연구)

  • Joung, Tae-Hwan;Sammut, Karl;He, Fangpo;Lee, Seung-Keon
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.48-53
    • /
    • 2009
  • Autonomous Underwater Vehicles (AUV's) provide an important means for collecting detailed scientific information from the ocean depths. The hull resistance of an AUV is an important factor in determining the power requirements and range of the vehicle. This paper describes a design method that uses Computational Fluid Dynamics (CFD) to determine the hull resistance of an AUV under development. The CFD results reveal the distribution of the hydrodynamic values (velocity, pressure, etc.) of an AUV with a ducted propeller. This paper also discusses the optimization of the AUV hull profile to reduce the total resistance. This paper demonstrates that shape optimization in a conceptual design is possible by using a commercial CFD package. Optimum design work to minimize the drag force of an AUV was carried out, for a given object function and constraints.

Shape optimization of an autonomous underwater vehicle with a ducted propeller using computational fluid dynamics analysis

  • Joung, Tae-Hwan;Sammut, Karl;He, Fangpo;Lee, Seung-Keon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.1
    • /
    • pp.44-56
    • /
    • 2012
  • Autonomous Underwater Vehicles (AUVs) provide a useful means of collecting detailed oceano-graphic information. The hull resistance of an AUV is an important factor in determining the power requirements and range of the vehicle. This paper describes a procedure using Computational Fluid Dynamics (CFD) for determining the hull resistance of an AUV under development, for a given propeller rotation speed and within a given range of AUV velocities. The CFD analysis results reveal the distribution of the hydrodynamic values (velocity, pressure, etc.) around the AUV hull and its ducted propeller. The paper then proceeds to present a methodology for optimizing the AUV profile in order to reduce the total resistance. This paper demonstrates that shape optimization of conceptual designs is possible using the commercial CFD package contained in Ansys$^{TM}$. The optimum design to minimize the drag force of the AUV was identified for a given object function and a set of constrained design parameters.

An Improved Guidance Algorithm for Smooth Transition at Way-Points in 3D Space for Autonomous Underwater Vehicles

  • Subramanian, Saravanakumar;Thondiyath, Asokan
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.3
    • /
    • pp.139-150
    • /
    • 2012
  • This paper presents an improved guidance algorithm for autonomous underwater vehicles (AUV) in 3D space for generating smoother vehicle turn during the course change at the way-points. The way-point guidance by the line-of-sight (LOS) method has been modified for correcting the reference angles to achieve minimal calculation and smoother transition at the way-points. The algorithm has two phases in which the first phase brings the vehicle to converge to a distance threshold point on the line segment connecting the first two way-points and the next phase generates an angular path with smoother transition at the way-points. Then the desired angles are calculated from the reference and correction angles. The path points are regularly parameterized in the spherical coordinates and mapped to the Cartesian coordinates. The proposed algorithm is found to be simple and can be used for real time implementation. The details of the algorithm and simulation results are presented.

Formation Control for Underactuated Autonomous Underwater Vehicles Using the Approach Angle

  • Kim, Kyoung Joo;Park, Jin Bae;Choi, Yoon Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.3
    • /
    • pp.154-163
    • /
    • 2013
  • In this paper, we propose a formation control algorithm for underactuated autonomous underwater vehicles (AUVs) with parametric uncertainties using the approach angle. The approach angle is used to solve the underactuated problem for AUVs, and the leader-follower strategy is used for the formation control. The proposed controller considers the nonzero off-diagonal terms of the mass matrix of the AUV model and the associated parametric uncertainties. Using the state transformation, the mass matrix, which has nonzero off-diagonal terms, is transformed into a diagonal matrix to simplify designing the control. To deal with the parametric uncertainties of the AUV model, a self-recurrent wavelet neural network is used. The proposed formation controller is designed based on the dynamic surface control technique. Some simulation results are presented to demonstrate the performance of the proposed control method.