• Title/Summary/Keyword: Autonomous Systems

Search Result 1,580, Processing Time 0.028 seconds

Editorial for Vol. 31, No. 2 (편집자 주: 31권 2호)

  • Kim, Young Hyo
    • Korean journal of aerospace and environmental medicine
    • /
    • v.31 no.2
    • /
    • pp.31-32
    • /
    • 2021
  • In Vol. 31, No. 2, our journal prepared a review article, two original papers, and three case reports. First, autonomous systems are increasingly being introduced in aircraft systems. Therefore, it is crucial that flight crews are trained to adapt and handle these autonomous systems better. Consequently, we discussed crew resource management for handling autonomous systems. The fatigue of aviation workers is one of the biggest threats to aviation safety. Therefore, we analyzed the degree of fatigue in commercial aircraft pilots and evaluated the relationship between fatigue and their workload and the effect of fatigue on sleep. Since obesity has a significant impact on the health of aviation workers, we also comparatively analyzed the prevalence of obesity in Korea and Japan based on the data from the National Health and Nutrition Examination Survey. We defined cases that are difficult for aviation medical examiners to evaluate. This issue included cases of peripheral dizziness and tinnitus, cases of atopic dermatitis treated with biological agents, and cases of malignant tumors.

All kinds of singularity avoidance in redundant manipulators for autonomous manipulation

  • Kim, Jin-Hyun;Marani, Giacomo;Chung, Wan-Kyun;Yuh, Jun-Ku
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1587-1592
    • /
    • 2003
  • There are three kinds of singularity in controlling redundant manipulators. Kinematic, algorithmic and representation singularities are those. If manipulators fall into any singularity without proper action to avoid it, the control system must go away from our desire, and we can meet a dangerous situation. Hence, we have to deal the singularities very carefully. In this paper, we describe an on-line solution for avoiding the occurrence of both algorithmic and kinematic singularities in task-priority based kinematic controllers of robotic manipulators. Representation singularity can be easily avoided by using proper representation algorithm, so, in this paper, we only consider kinematic and algorithmic singularities. The proposed approach uses a desired task reconstruction and a successive task projection in order to maintain the measure for singularity over a user defined minimum value. It shows a gain in performance and a better task error especially when working in proximity of singular configurations. It is particularly suitable for autonomous systems where an off-line trajectory control scheme is often not applicable. The advantage and performance of the proposed controller is verified by simulation works. And, the experiment with real manipulator is remaining for the future works.

  • PDF

Mathematical modeling for flocking flight of autonomous multi-UAV system, including environmental factors

  • Kwon, Youngho;Hwang, Jun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.2
    • /
    • pp.595-609
    • /
    • 2020
  • In this study, we propose a decentralized mathematical model for predictive control of a system of multi-autonomous unmanned aerial vehicles (UAVs), also known as drones. Being decentralized and autonomous implies that all members make their own decisions and fly depending on the dynamic information received from other unmanned aircraft in the area. We consider a variety of realistic characteristics, including time delay and communication locality. For this flocking flight, we do not possess control for central data processing or control over each UAV, as each UAV runs its collision avoidance algorithm by itself. The main contribution of this work is a mathematical model for stable group flight even in adverse weather conditions (e.g., heavy wind, rain, etc.) by adding Gaussian noise. Two of our proposed variance control algorithms are presented in this work. One is based on a simple biological imitation from statistical physical modeling, which mimics animal group behavior; the other is an algorithm for cooperatively tracking an object, which aligns the velocities of neighboring agents corresponding to each other. We demonstrate the stability of the control algorithm and its applicability in autonomous multi-drone systems using numerical simulations.

3-Dimensional Analysis of Magnetic Road and Vehicle Position Sensing System for Autonomous Driving (자율주행용 자계도로의 3차원 해석 및 차량위치검출시스템)

  • Ryoo Young-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.1
    • /
    • pp.75-80
    • /
    • 2005
  • In this paper, a 3-dimensional analysis of magnetic road and a position sensing system for an autonomous vehicle system is described. Especially, a new position sensing system, end of the important component of an autonomous vehicle, is proposed. In a magnet based autonomous vehicle system, to sense the vehicle position, the sensor measures the field of magnetic road. The field depends on the sensor position of the vehicle on the magnetic road. As the rotation between the magnetic field and the sensor position is highly complex, it is difficult that the relation is stored in memory. Thus, a neural network is used to learn the mapping from th field to the position. The autonomous vehicle system with the proposed position sensing system is tested in experimental setup.

Examination on Autonomous Recovery Algorithm of Piping System (배관 체계 자율 복구 알고리즘 비교, 분석 및 고찰)

  • Yang, Dae Won;Lee, Jeung-hoon;Shin, Yun-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.4
    • /
    • pp.1-11
    • /
    • 2021
  • Piping systems comprising pumps and valves are essential in the power plant, oil, and defense industry. Their purpose includes a stable supply of the working fluid or ensuring the target system's safe operation. However, piping system accidents due to leakage of toxic substances, explosions, and natural disasters are prevalent In addition, with the limited maintenance personnel, it becomes difficult to detect, isolate, and reconfigure the damage of the piping system and recover the unaffected area. An autonomous recovery piping system can play a vital role under such circumstances. The autonomous recovery algorithms for the piping system can be divided into low-pressure control algorithms, hydraulic resistance control algorithms, and flow inventory control algorithms. All three methods include autonomous opening/closing logic to isolate damaged areas and recovery the unaffected area of piping systems. However, because each algorithm has its strength and weakness, appropriate application considering the overall design, vital components, and operating conditions is crucial. In this regard, preliminary research on algorithm's working principle, its design procedures, and expected damage scenarios should be accomplished. This study examines the characteristics of algorithms, the design procedure, and working logic. Advantages and disadvantages are also analyzed through simulation results for a simplified piping system.

Study on the Prioritization of Improvement Plan for Road Traffic Safety Projects for Business Vehicles by the Introduction of Autonomous Vehicles (자율주행자동차 도입에 따른 사업용 차량 도로교통 안전사업 개선방안 우선순위 선정 연구)

  • Park, Sangmin;Jeong, Harim;Lee, Seungjun;Park, Sujung;Nam, Doohee;Yun, Ilsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.3
    • /
    • pp.1-14
    • /
    • 2017
  • Recently, the automobile industry is rapidly changing due to autonomous vehicles based on advanced ICT technology. As a result, studies related to autonomous vehicles have also been actively conducted. However, most studies are focusing on the autonomous driving technology so that the prediction of changes in road traffic safety and associated legal system due to the introduction of autonomous vehicles are lacking. The purpose of this study is to suggest improvement methods and priorities of road traffic safety projects according to the introduction of autonomous vehicles. As a result of the AHP analysis using the results of the questionnaire surveyed for autonomous driving car experts, it was analyzed that revision of the traffic safety inspection law and development of education system for autonomous driving motor drivers and operators should be given top priority.

Analysis of Factors Affecting Satisfaction with Commuting Time in the Era of Autonomous Driving (자율주행시대에 통근시간 만족도에 영향을 미치는 요인분석)

  • Jang, Jae-min;Cheon, Seung-hoon;Lee, Soong-bong
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.5
    • /
    • pp.172-185
    • /
    • 2021
  • As the era of autonomous driving approaches, it is expected to have a significant impact on our lives. When autonomous driving cars emerge, it is necessary to develop an index that can evaluate autonomous driving cars as it enhance the productive value of the car by reducing the burden on the driver. This study analyzed how the autonomous driving era affects commuting time and commuting time satisfaction among office goers using a car in Gyeonggi-do. First, a nonlinear relationship (V) was derived for the commuting time and commuting time satisfaction. Here, the factors affecting commuting time satisfaction were analyzed through a binomial logistic model, centered on the sample belonging to the nonlinear section (70 minutes or more for commuting time), which is likely to be affected by the autonomous driving era. The analysis results show that the variables affected by the autonomous driving era were health, sleeping hours, working hours, and leisure time. Since the emergence of autonomous driving cars is highly likely to improve the influencing variables, long-distance commuters are likely to feel higher commuting time satisfaction.

A Study on Assessing User Preferences for Autonomous Driving Behavior Using a Driving Simulator (드라이빙 시뮬레이터를 활용한 자율주행 이용자 선호도 평가에 관한 연구)

  • Dohoon Kim;Sungkab Joo;Homin Choi;Junbeom Ryu
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.3
    • /
    • pp.147-159
    • /
    • 2023
  • In order to make autonomous vehicles more trustworthy, it is necessary to focus on the users of autonomous vehicles. By evaluating the preferences for driving behaviors of autonomous vehicles, we aim to identify driving behaviors that increase the acceptance of users in autonomous vehicles. We implemented two driving behaviors, aggressive and cautious, in a driving simulator and allowed users to experience them. Biometric data was collected during the ride, and pre- and post-riding surveys were conducted. Subjects were categorized into two groups based on their driving habits and analyzed against the collected biometric data. Both aggressive and cautious driving subjects preferred the cautious driving behavior of autonomous vehicles.

Autonomous Vehicle Situation Information Notification System (자율주행차량 상황 정보 알림 시스템)

  • Jinwoo Kim;Kitae Kim;Kyoung-Wook Min;Jeong Dan Choi
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.5
    • /
    • pp.216-223
    • /
    • 2023
  • As the technology and level of autonomous vehicles advance and they drive in more diverse road environments, an intuitive and efficient interaction system is needed to resolve and respond to the situations the vehicle faces. The development of driving technology from the perspective of autonomous driving has the ultimate goal of responding to situations involving humans or more. In particular, in complex road environments where mutual concessions must be made, the role of a system that can respond flexibly through efficient communication methods to understand each other's situation between vehicles or between pedestrians and vehicles is important. In order to resolve the status of the vehicle or the situation being faced, the provision and method of information must be intuitive and the efficient operation of an autonomous vehicle through interaction with intention is required. In this paper, we explain the vehicle structure and functions that can display information about the situation in which the autonomous vehicle driving in a living lab can drive stably and efficiently in a diverse and complex environment.

A Study on Intelligence Navigation for Autonomous Mobile Robot Using Fuzzy Logic Control

  • Huh, Dei-Jeung;Lee, Woo-Young;Huh, Uk-Youl
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.138.5-138
    • /
    • 2001
  • The autonomous robot has the ability of obstacle avoidance and target tracking with some manufactured information. In this paper, it is shown that autonomous mobile robot can avoid fixed obstacles using the map made before and the fuzzy controller is adopted with the global path planing and the local path planing when the robot navigates. With that map sensor, information will be used when an autonomous robot navigates. This paper proves that robot can navigate through optimized route and keep the stable condition.

  • PDF