• Title/Summary/Keyword: Autonomous State Estimation

Search Result 35, Processing Time 0.02 seconds

The Study on Autonomous State Estimator for Smart Grid (스마트그리드를 위한 자율형 상태관측기 연구)

  • Park, Jong-Chan;Lee, Se-In
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.1
    • /
    • pp.32-36
    • /
    • 2011
  • In this study, authors have proposed the autonomous state estimation which has been composed with IEC61850, GPS time synchronization and objective model design concept. The proposed method is able to supervise/correct measurement and communication error from SCADA. The major advantages of the proposed autonomous state estimation are that it is possible to evaluate integrity of data measured and transferred from SCADA, to reduce human intervention and to expense national-size applications such as EMS (Energy Management System), WAMS (Wide Area Monitoring System) or WAPS (Wide Area Protection System). This study addresses the issues related to the operation of the smart grid and proposes a new automated approach to achieve this goal. Through applying the proposed system to IEEE 14-bus test electric system, we prove the possibility of the proposed idea.

LiDAR Static Obstacle Map based Vehicle Dynamic State Estimation Algorithm for Urban Autonomous Driving (도심자율주행을 위한 라이다 정지 장애물 지도 기반 차량 동적 상태 추정 알고리즘)

  • Kim, Jongho;Lee, Hojoon;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.4
    • /
    • pp.14-19
    • /
    • 2021
  • This paper presents LiDAR static obstacle map based vehicle dynamic state estimation algorithm for urban autonomous driving. In an autonomous driving, state estimation of host vehicle is important for accurate prediction of ego motion and perceived object. Therefore, in a situation in which noise exists in the control input of the vehicle, state estimation using sensor such as LiDAR and vision is required. However, it is difficult to obtain a measurement for the vehicle state because the recognition sensor of autonomous vehicle perceives including a dynamic object. The proposed algorithm consists of two parts. First, a Bayesian rule-based static obstacle map is constructed using continuous LiDAR point cloud input. Second, vehicle odometry during the time interval is calculated by matching the static obstacle map using Normal Distribution Transformation (NDT) method. And the velocity and yaw rate of vehicle are estimated based on the Extended Kalman Filter (EKF) using vehicle odometry as measurement. The proposed algorithm is implemented in the Linux Robot Operating System (ROS) environment, and is verified with data obtained from actual driving on urban roads. The test results show a more robust and accurate dynamic state estimation result when there is a bias in the chassis IMU sensor.

Secondary Battery SOC Estimation Technique for an Autonomous System Based on Extended Kalman Filter (자율이동체를 위한 2차 전지의 확장칼만필터에 기초한 SOC 추정 기법)

  • Jeon, Chang-Wan;Lee, Yu-Mi
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.9
    • /
    • pp.904-908
    • /
    • 2008
  • Every autonomous system like a robot needs a power source known as a battery. And proper management of the battery is very important for proper operation. To know State of Charge(SOC) of a battery is the very core of proper battery management. In this paper, the SOC estimation problem is tackled based on the well known Extended Kalman Filter(EKF). Combined the existing battery model is used and then EKF is employed to estimate the SOC. SOC table is constructed by extensive experiment under various conditions and used as a true SOC. To verify the estimation result, extensive experiment is performed with various loads. The comparison result shows the battery estimation problem can be well solved with the technique proposed in this paper. The result of this paper can be used to develop related autonomous system.

Vehicle State Estimation Robust to Wheel Slip Using Extended Kalman Filter (휠 슬립에 강건한 확장칼만필터 기반 차량 상태 추정)

  • Myeonggeun, Jun;Ara, Jo;Kyongsu, Yi
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.4
    • /
    • pp.16-20
    • /
    • 2022
  • Accurate state estimation is important for autonomous driving. However, the estimation error increases in situations that a lot of longitudinal slip occurs. Therefore, this paper presents a vehicle state estimation method using an Extended Kalman Filter. The filter estimates the states of the host vehicle robust to wheel slip. It utilizes the measurements of the four-wheel rotational speeds, longitudinal acceleration, yaw-rate, and steering wheel angle. Nonlinear measurement model is represented by Ackermann Model. The main advantage of this approach is the accurate estimation of yaw rate due to the measurement of the steering wheel angle. The proposed algorithm is verified in scenarios of autonomous emergency braking (AEB), lane change (LC), lane keeping (LK) using an automated vehicle. The results show that the proposed algorithm guarantees accurate estimation in such scenarios.

Nonlinear control of an autonomous mobile robot using nonlinear obserbers

  • Ishikawa, Masato;Sampei, Mitsuji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.400-404
    • /
    • 1994
  • In this paper, we will investigate the position estimation problem for autonomous mobile robots. Formulating this as a state estimation problem for nonlinear SISO system, then we will apply several types of nonlinear observers. Simulation results of observer-based navigation control will be also provided.

  • PDF

Vision-based Obstacle State Estimation and Collision Prediction using LSM and CPA for UAV Autonomous Landing (무인항공기의 자동 착륙을 위한 LSM 및 CPA를 활용한 영상 기반 장애물 상태 추정 및 충돌 예측)

  • Seongbong Lee;Cheonman Park;Hyeji Kim;Dongjin Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.6
    • /
    • pp.485-492
    • /
    • 2021
  • Vision-based autonomous precision landing technology for UAVs requires precise position estimation and landing guidance technology. Also, for safe landing, it must be designed to determine the safety of the landing point against ground obstacles and to guide the landing only when the safety is ensured. In this paper, we proposes vision-based navigation, and algorithms for determining the safety of landing point to perform autonomous precision landings. To perform vision-based navigation, CNN technology is used to detect landing pad and the detection information is used to derive an integrated navigation solution. In addition, design and apply Kalman filters to improve position estimation performance. In order to determine the safety of the landing point, we perform the obstacle detection and position estimation in the same manner, and estimate the speed of the obstacle using LSM. The collision or not with the obstacle is determined based on the CPA calculated by using the estimated state of the obstacle. Finally, we perform flight test to verify the proposed algorithm.

Online Dynamic Modeling of Ubiquitous Sensor based Embedded Robot Systems using Kalman Filter Algorithm (칼만 필터 알고리즘을 이용한 유비쿼터스 센서 기반 임베디드 로봇시스템의 온라인 동적 모델링)

  • Cho, Hyun-Cheol;Lee, Jin-Woo;Lee, Young-Jin;Lee, Kwon-Soon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.8
    • /
    • pp.779-784
    • /
    • 2008
  • This paper presents Kalman filter based system modeling algorithm for autonomous robot systems. State of the robot system is measured using embedded sensor systems and then carried to a host computer via ubiquitous sensor network (USN). We settle a linear state-space motion equation for unknown robot system dynamics and modify a popular Kalman filter algorithm in deriving suitable parameter estimation mechanism. To represent time-delay nature due to network media in system modeling, we construct an augmented state-space model which is mainly composed of original state and estimated parameter vectors. We conduct real-time experiment to test our proposed estimation algorithm where speed state of the constructed robot is used as system observation.

Multiple Behavior s Learning and Prediction in Unknown Environment

  • Song, Wei;Cho, Kyung-Eun;Um, Ky-Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.12
    • /
    • pp.1820-1831
    • /
    • 2010
  • When interacting with unknown environments, an autonomous agent needs to decide which action or action order can result in a good state and determine the transition probability based on the current state and the action taken. The traditional multiple sequential learning model requires predefined probability of the states' transition. This paper proposes a multiple sequential learning and prediction system with definition of autonomous states to enhance the automatic performance of existing AI algorithms. In sequence learning process, the sensed states are classified into several group by a set of proposed motivation filters to reduce the learning computation. In prediction process, the learning agent makes a decision based on the estimation of each state's cost to get a high payoff from the given environment. The proposed learning and prediction algorithms heightens the automatic planning of the autonomous agent for interacting with the dynamic unknown environment. This model was tested in a virtual library.

Survey on Developing Autonomous Micro Aerial Vehicles (드론 자율비행 기술 동향)

  • Kim, S.S.;Jung, S.G.;Cha, J.H.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.2
    • /
    • pp.1-11
    • /
    • 2021
  • As sensors such as Inertial Measurement Unit, cameras, and Light Detection and Rangings have become cheaper and smaller, research has been actively conducted to implement functions automating micro aerial vehicles such as multirotor type drones. This would fully enable the autonomous flight of drones in the real world without human intervention. In this article, we present a survey of state-of-the-art development on autonomous drones. To build an autonomous drone, the essential components can be classified into pose estimation, environmental perception, and obstacle-free trajectory generation. To describe the trend, we selected three leading research groups-University of Pennsylvania, ETH Zurich, and Carnegie Mellon University-which have demonstrated impressive experiment results on automating drones using their estimation, perception, and trajectory generation techniques. For each group, we summarize the core of their algorithm and describe how they implemented those in such small-sized drones. Finally, we present our up to date research status on developing an autonomous drone.