• 제목/요약/키워드: Autonomous Robot Navigation

검색결과 307건 처리시간 0.129초

회전팔 추진기를 가진 시험용 HAUV의 설계 및 구현 (Design and Implementation of A Hovering AUV with A Rotatable-Arm Thruster)

  • 신동협;배설봉;주문갑;백운경
    • 대한임베디드공학회논문지
    • /
    • 제9권3호
    • /
    • pp.165-171
    • /
    • 2014
  • In this paper, we propose the hardware and software of a test-bed of a hovering AUV (autonomous underwater vehicle). Test-bed to develop as the underwater robot for the hovering -type is planning to apply for marine resource development and exploration for deep sea. The RTU that controls a azimuth thruster and a vertical thruster of test-bed is a intergrated-type thruster. The main control unit that collects sensor's data and performs high-speed processing and controls a movement of test-bed is a underwater hybrid navigation system. Also it transfers position, posture, state information of test-bed to the host PC of user using a wireless communication. The host PC checks a test-bed in real time by using a realtime monitoring system that is implemented by LabVIEW.

진화하는 셀룰라 오토마타를 이용한 자율이동로봇군의 행동제어 (Behavior Control of Autonomous Mobile Robots using ECANS1)

  • 이동욱;정영준;심귀보
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 G
    • /
    • pp.2183-2185
    • /
    • 1998
  • In this paper, we propose a method of designing neural networks using biological inspired developmental and evolutionary concept. The living things are best information processing system in themselves. One individual is developed from a generative cell. And a species of this individual have adapted itself to the environment by evolution. Ontogeny of organism is embodied in cellular automata and phylogeny of species is realized by evolutionary algorithms. The connection among cells is determined by a rule of cellular automata. In order to obtain the best neural networks in the environment, we evolve the arrangement of initial cells. The cell, that is neuron of neural networks, is modeled on chaotic neuron with firing or rest state like biological neuron. A final output of network is measured by frequency of firing state. The effectiveness of the proposed scheme is verified by applying it to navigation problem of robot.

  • PDF

Voronoi Diagram-based USBL Outlier Rejection for AUV Localization

  • Hyeonmin Sim;Hangil Joe
    • 한국해양공학회지
    • /
    • 제38권3호
    • /
    • pp.115-123
    • /
    • 2024
  • USBL systems are essential for providing accurate positions of autonomous underwater vehicles (AUVs). On the other hand, the accuracy can be degraded by outliers because of the environmental conditions. A failure to address these outliers can significantly impact the reliability of underwater localization and navigation systems. This paper proposes a novel outlier rejection algorithm for AUV localization using Voronoi diagrams and query point calculation. The Voronoi diagram divides data space into Voronoi cells that center on ultra-short baseline (USBL) data, and the calculated query point determines if the corresponding USBL data is an inlier. This study conducted experiments acquiring GPS and USBL data simultaneously and optimized the algorithm empirically based on the acquired data. In addition, the proposed method was applied to a sensor fusion algorithm to verify its effectiveness, resulting in improved pose estimations. The proposed method can be applied to various sensor fusion algorithms as a preprocess and could be used for outlier rejection for other 2D-based location sensors.

레인 방법에 기반한 이동 로봇의 장애물 회피 (Goal-directed Obstacle Avoidance Using Lane Method)

  • 도현민;김용식;김봉근;이재훈;오바 코타로
    • 로봇학회논문지
    • /
    • 제4권2호
    • /
    • pp.121-129
    • /
    • 2009
  • This paper presents a goal-directed reactive obstacle avoidance method based on lane method. The reactive collision avoidance is necessarily required for a robot to navigate autonomously in dynamic environments. Many methods are suggested to implement this concept and one of them is the lane method. The lane method divides the environment into lanes and then chooses the best lane to follow. The proposed method does not use the discrete lane but chooses a line closest to the original target line without collision when an obstacle is detected, thus it has a merit in the aspect of running time and it is more proper for narrow corridor environment. If an obstacle disturbs the movement of a robot by blocking a target path, a robot generates a temporary target line, which is parallel to an original target line and tangential to an obstacle circle, to avoid a collision with an obstacle and changes to and follows that line until an obstacle is removed. After an obstacle is clear, a robot returns to an original target line and proceeds to the goal point. Obstacleis recognized by laser range finder sensor and represented by a circle. Our method has been implemented and tested in a corridor environment and experimental results show that our method can work reliably.

  • PDF

스케일불변 특징의 삼차원 재구성을 통한 이동 로봇의 상대위치추정 (Relative Localization for Mobile Robot using 3D Reconstruction of Scale-Invariant Features)

  • 길세기;이종실;유제군;이응혁;홍승홍;신동범
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제55권4호
    • /
    • pp.173-180
    • /
    • 2006
  • A key component of autonomous navigation of intelligent home robot is localization and map building with recognized features from the environment. To validate this, accurate measurement of relative location between robot and features is essential. In this paper, we proposed relative localization algorithm based on 3D reconstruction of scale invariant features of two images which are captured from two parallel cameras. We captured two images from parallel cameras which are attached in front of robot and detect scale invariant features in each image using SIFT(scale invariant feature transform). Then, we performed matching for the two image's feature points and got the relative location using 3D reconstruction for the matched points. Stereo camera needs high precision of two camera's extrinsic and matching pixels in two camera image. Because we used two cameras which are different from stereo camera and scale invariant feature point and it's easy to setup the extrinsic parameter. Furthermore, 3D reconstruction does not need any other sensor. And the results can be simultaneously used by obstacle avoidance, map building and localization. We set 20cm the distance between two camera and capture the 3frames per second. The experimental results show :t6cm maximum error in the range of less than 2m and ${\pm}15cm$ maximum error in the range of between 2m and 4m.

확장 칼만 필터를 이용한 로봇의 실내위치측정 (Indoor Localization for Mobile Robot using Extended Kalman Filter)

  • 김정민;김연태;김성신
    • 한국지능시스템학회논문지
    • /
    • 제18권5호
    • /
    • pp.706-711
    • /
    • 2008
  • 본 논문에서는 Inertial Navigation System (INS)와 Ultrasonic-SATellite (U-SAT)의 센서융합을 기반으로 100mm 이하의 정밀위치측정 시스템을 보여준다. INS는 자이로와 두 개의 엔코더로 구성되고, U-SAT는 네 개의 송신기와 한 개의 수신기로 구성하였다. 구성된 센서들은 정밀한 정밀위치측정을 위하여 Extended Kalman Filler (EKF)를 통해 센서들을 융합하였다. 위치측정의 성능을 증명하기 위해 본 논문에서는 로봇이 0.5 m/s의 속도로 주행한 실제 데이터(직진, 곡선)와 시뮬레이션을 통한 실험을 하였으며, 실험에 사용된 위치측정방법은 일반적인 센서융합과 INS 데이터만을 칼만 필터에 이용한 센서융합을 비교하였다. 시뮬레이션과 실제 데이터를 통해 실험한 결과, INS 데이터만을 칼만 필터에 이용한 센서융합이 더 정밀함을 확인할 수 있었다.

실내 측위 추정을 위한 센서 융합과 결합된 칼만 필터 (A Kalman filter with sensor fusion for indoor position estimation)

  • 양장훈
    • 한국항행학회논문지
    • /
    • 제25권6호
    • /
    • pp.441-449
    • /
    • 2021
  • 지능형 이동체 시스템 발달에 따라서, 보다 정확한 위치 정보 추정 기술에 대한 요구가 증가하고 있다. 특히, 실내에서 사용되는 이동 로봇에게 주어진 일을 정해진 위치에서 수행할 때에는 보다 정확한 위치 추정에 대한 성능을 필요로 한다. 따라서, 이 논문에서는 고정형 또는 이동형 사물에 적용 가능한 진보된 위치 추정 방법을 제안한다. 제안 방법은 미리 설치된 블루투스 비콘 신호로부터 위치 추정 결과를 칼만 필터의 관찰 신호로 사용한다. 또한, 센서의 위치와 각도에 따라서 결정되는 각 방향의 중력 가속도를 추정하기 위해서, 롤(roll)과 피치(pitch) 각도를 먼저 계산하고, 이 결과를 자기장 센서 출력과 결합하여 요(Yaw) 각도를 추정함으로써,이동체의 진행 방향을 정확히 추정한다. 이를 기반으로 이동체의 제어 입력이 되는 가속도 신호를 정확히 계산함으로써, 칼만 필터의 성능을 향상시키는 방법을 제안한다. 제안 방법의 성능은 고정 상태와 이동 상태로 나누어 평균 위치 오차를 계산하여 기존의 칼만 필터와 비교시 위치 오차를 크게 향상시킴을 확인하였다.

RFID 환경을 이용한 홈 메스클린업 로봇 개발에 관한 연구 (A Study on the Development of a Home Mess-Cleanup Robot Using an RFID Tag-Floor)

  • 김승우;김상대;김병호;김홍래
    • 한국산학기술학회논문지
    • /
    • 제11권2호
    • /
    • pp.508-516
    • /
    • 2010
  • 본 논문에서는 자율적이며 자동화된 정리정돈 기능을 갖는 홈 메스클린업 로봇(McBot)을 개발한다. 그 동안 진공청소기가 보급되어 집안 청소에 편리성 향상이 이루어졌지만 진공청소기를 운영하는 노동은 인간의 몫이었다. 그것을 해결하기 위하여 최근에 로봇청소기들이 개발되었으나, 진공 청소하기 이전에 해결해야 하는 신문, 옷가지 등을 정돈하거나 진공흡입하기 어려운 크기의 쓰레기들을 정리하는 것은 여전히 사람이 처리해야 하는 심각한 노동으로 남아 있다. 이러한 이유로 본격적인 청소로봇 시장이 아직 형성되지 못하고 있다. 그래서 본 논문에서는 가정에서의 정리정돈 문제를 해결할 수 있는 소위 홈 메스클린업 로봇을 개발하고 새로운 디자인 방법과 제어 기법 그리고 자기 위치 인식 알고리즘을 제안한다. 홈 메스클린업 로봇은 정리정돈을 위하여 쾌속 네비게이션과 정교한 매니퓰레이션 기능을 필요로 한다. 본 논문에서는 자율적인 네비게이션 기능으로 장애물을 회피하여 원하는 목적지까지 고속으로 이동할 수 있는 휠 기반의 이동로봇을 개발한다. 또한 정리정돈 작업을 위한 정교한 매니플레이션 기능으로 6 자유도를 갖는 로봇 팔과 리프트 등의 보조장치들을 개발하며, 그것들이 정밀 제어될 수 있는 새로운 알고리즘을 제시한다. 특히 홈 메스클린업 로봇의 탐색 시스템은 지금까지의 청소로봇들과는 달리 일정한 패턴이나 벽면을 따라 움직이는 방식이 아닌 실질적인 실내 구조의 파악과 잡은 물체를 원래의 위치로 이동시키거나 정돈 장소까지 이동하기 위한 절대 좌표 형태의 자기 위치 인식 기능이 필요하다. 그러므로 본 논문에서는 자신의 절대좌표 인식 및 물체인식을 위하여 RFID 태그들을 이용한 자기위치 인식 시스템을 개발한다. 마지막으로 본 논문에서 설계된 홈 메스클린업 로봇이 RFID 환경에서 정리정돈작업을 수행하는 실제 실험을 통하여 좋은 성능을 검증한다.

키넥트 센서를 이용한 인공표식 기반의 위치결정 시스템 (A Landmark Based Localization System using a Kinect Sensor)

  • 박귀우;채정근;문상호;박찬식
    • 전기학회논문지
    • /
    • 제63권1호
    • /
    • pp.99-107
    • /
    • 2014
  • In this paper, a landmark based localization system using a Kinect sensor is proposed and evaluated with the implemented system for precise and autonomous navigation of low cost robots. The proposed localization method finds the positions of landmark on the image plane and the depth value using color and depth images. The coordinates transforms are defined using the depth value. Using coordinate transformation, the position in the image plane is transformed to the position in the body frame. The ranges between the landmarks and the Kinect sensor are the norm of the landmark positions in body frame. The Kinect sensor position is computed using the tri-lateral whose inputs are the ranges and the known landmark positions. In addition, a new matching method using the pin hole model is proposed to reduce the mismatch between depth and color images. Furthermore, a height error compensation method using the relationship between the body frame and real world coordinates is proposed to reduce the effect of wrong leveling. The error analysis are also given to find out the effect of focal length, principal point and depth value to the range. The experiments using 2D bar code with the implemented system show that the position with less than 3cm error is obtained in enclosed space($3,500mm{\times}3,000mm{\times}2,500mm$).

이동물체의 기하학적 위치정보를 이용한 자율이동로봇의 위치추정 (Position Estimation of Autonomous Mobile Robot Using Geometric Information of a Moving Object)

  • 진태석;이장명
    • 한국지능시스템학회논문지
    • /
    • 제14권4호
    • /
    • pp.438-444
    • /
    • 2004
  • 가까운 미래에 필요로 하게 될 지능형 로봇은 인간과 공존하고 효과적으로 인간을 도울 수 있는 인간 친화적인 로봇이다. 이러한 목적을 실현하기 위해서 무엇보다 로봇은 주어진 환경에서만 아니라 미지의 환경에서도 주행중인 자신의 위치와 자세를 인식할 수 있어야 한다. 더욱이, 자신의 위치가 자연스럽게 인식될 수 있어야 할 것이다. 그래서 이동로봇의 주행에서 발생되는 불확실을 해결함으로써 로봇의 위치를 추정할 수 있어야 할 것이다. 본 논문에서는 이동물체의 영상정보를 이용하여 이동로봇의 자기위치추정을 위한 방법을 제시하고 있다. 이것은 엔코더의 관측 위치정보와 이동로봇의 위치정보를 추정하기 위한 카메라영상에서의 추정된 위치정보를 결합하는 방법이다. 기준좌표계상에 이동물체의 사전 경로정보와 투영된 카메라 모델, 기하학적 구속식을 이용함으로써 이동물체에 대한 영상 좌표와 추정된 이동로봇의 위치 정보간의 관계를 표현 할 수 있다. 제시된 식은 추정된 위치에 근거하기 때문에 측정오차를 항상 가지게 된다. 제안된 방법은 관측되고 추정된 영상좌표간의 오차정보를 이용하여 이동로봇의 위치를 추정할 수 있었다. 이러한 추정을 위해서 칼만필터를 적용하였으며 제안된 방법의 성능은 시뮬레이션과 실험을 통하여 제시하고 있다.