• Title/Summary/Keyword: Autonomous GPS

Search Result 188, Processing Time 0.023 seconds

The Tunnel Lane Positioning System of a Autonomous Vehicle in the LED Lighting (LED 조명을 이용한 자율주행차용 터널 차로측위 시스템)

  • Jeong, Jae hoon;Lee, Dong heon;Byun, Gi-sig;Cho, Hyung rae;Cho, Yoon ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.1
    • /
    • pp.186-195
    • /
    • 2017
  • Recently, autonomous vehicles have been studied actively. There are various technologies such as ITS, Connected Car, V2X and ADAS in order to realize such autonomous driving. Among these technologies, it is particularly important to recognize where the vehicle is on the road in order to change the lane and drive to the destination. Generally, it is done through GPS and camera image processing. However, there are limitations on the reliability of the positioning due to shaded areas such as tunnels in the case of GPS, and there are limitations in recognition and positioning according to the state of the road lane and the surrounding environment when performing the camera image processing. In this paper, we propose that LED lights should be installed for autonomous vehicles in tunnels which are shaded area of the GPS. In this paper, we show that it is possible to measure the position of the current lane of the autonomous vehicle by analyzing the color temperature after constructing the tunnel LED lighting simulation environment which illuminates light of different color temperature by lane. Based on the above, this paper proposes a lane positioning technique using tunnel LED lights.

Preliminary Orbit Determination For A Small Satellite Mission Using GPS Receiver Data

  • Nagarajan, Narayanaswamy;Bavkir, Burhan;John, Ong Chuan Fu
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.141-144
    • /
    • 2006
  • The deviations in the injection orbital parameters, resulting from launcher dispersions, need to be estimated and used for autonomous satellite operations. For the proposed small satellite mission of the university there will be two GPS receivers onboard the satellite to provide the instantaneous orbital state to the onboard data handling system. In order to meet the power requirements, the satellite will be sun-tracking whenever there is no imaging operation. For imaging activities, the satellite will be maneuvered to nadir-pointing mode. Due to such different modes of orientation the geometry for the GPS receivers will not be favorable at all times and there will be instances of poor geometry resulting in no output from the GPS receivers. Onboard the satellite, the orbital information should be continuously available for autonomous switching on/off of various subsystems. The paper presents the strategies to make use of small arcs of data from GPS receivers to compute the mean orbital parameters and use the updated orbital parameters to calculate the position and velocity whenever the same is not available from GPS receiver. Thus the navigation message from the GPS receiver, namely the position vector in Earth-Centered-Earth-Fixed (ECEF) frame, is used as measurements. As for estimation, two techniques - (1) batch least squares method, and (2) Kalman Filter method are used for orbit estimation (in real time). The performance of the onboard orbit estimation has been assessed based on hardware based multi-channel GPS Signal simulator. The results indicate good converge even with short arcs of data as the GPS navigation data are generally very accurate and the data rate is also fast (typically 1Hz).

  • PDF

A GPS Positioning and Receiver Autonomous Integrity Monitoring Algorithm Considering SA Fade Away (고의잡음의 제거를 고려한 GPS항법 및 무결성 검정알고리즘)

  • Choi, Jae-Youl;Park, Soon;Park, Chan-Sik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.5
    • /
    • pp.425-433
    • /
    • 2002
  • After the removal of SA (Selective Availability), horizontal accuracy of 25m(2dRMS) is easily obtained using GPS (Global Positioning System). In this paper, the error characteristics without SA are analyzed and a navigation algorithm concerns this error characteristics is proposed to further improve the accuracy. The proposed method utilizes the relationship between elevation angle and errors that are remained after ionospheric and troposheric delay compensation. The relationship is derived from real measurements and used as a weighting matrix of weighted least squares estimator. Furthermore, a RAIM (Receiver Autonomous Integrity Monitoring) technique is included to remove abnormal measurements affected by multi-path or low SNR (Signal-to-Noise Ratio). It is shown that using the proposed method, more than 4 times accurate result, which is comparable with DGPS (Differential GPS), can be obtained from experiments with real data. Besides accuracy and reliability, the proposed method reduces large jumps in position and maintains better performance than a method using mask angle to completely remove satellites below this mask angle. Thus it is expected that the proposed method can be efficiently applied to land navigation where some satellites are blocked by building or forest.

Autonomous Traveling of Unmanned Golf-Car using GPS and Vision system (GPS와 비전시스템을 이용한 무인 골프카의 자율주행)

  • Jung, Byeong Mook;Yeo, In-Joo;Cho, Che-Seung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.6
    • /
    • pp.74-80
    • /
    • 2009
  • Path tracking of unmanned vehicle is a basis of autonomous driving and navigation. For the path tracking, it is very important to find the exact position of a vehicle. GPS is used to get the position of vehicle and a direction sensor and a velocity sensor is used to compensate the position error of GPS. To detect path lines in a road image, the bird's eye view transform is employed, which makes it easy to design a lateral control algorithm simply than from the perspective view of image. Because the driving speed of vehicle should be decreased at a curved lane and crossroads, so we suggest the speed control algorithm used GPS and image data. The control algorithm is simulated and experimented from the basis of expert driver's knowledge data. In the experiments, the results show that bird's eye view transform are good for the steering control and a speed control algorithm also shows a stability in real driving.

Design of Multisensor Navigation System for Autonomous Precision Approach and Landing

  • Soon, Ben K.H.;Scheding, Steve;Lee, Hyung-Keun;Lee, Hung-Kyu
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.377-382
    • /
    • 2006
  • Precision approach and landing of aircraft in a remote landing zone autonomously present several challenges. Firstly, the exact location, orientation and elevation of the landing zone are not always known; secondly, the accuracy of the navigation solution is not always sufficient for this type of precision maneuver if there is no DGPS availability within close proximity. This paper explores an alternative approach for estimating the navigation parameters of the aircraft to the landing area using only time-differenced GPS carrier phase measurement and range measurements from a vision system. Distinct ground landmarks are marked before the landing zone. The positions of these landmarks are extracted from the vision system then the ranges relative to these locations are used as measurements for the extended Kalman filter (EKF) in addition to the precise time-differenced GPS carrier phase measurements. The performance of this navigation algorithm is demonstrated using simulation.

  • PDF

3D Map Generation System for Indoor Autonomous Navigation (실내 자율 주행을 위한 3D Map 생성 시스템)

  • Moon, SungTae;Han, Sang-Hyuck;Eom, Wesub;Kim, Youn-Kyu
    • Aerospace Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.140-148
    • /
    • 2012
  • For autonomous navigation, map, pose tracking, and finding the shortest path are required. Because there is no GPS signal in indoor environment, the current position should be recognized in the 3D map by using image processing or something. In this paper, we explain 3D map creation technology by using depth camera like Kinect and pose tracking in 3D map by using 2D image taking from camera. In addition, the mechanism of avoiding obstacles is discussed.

Autonomous-flight Drone Algorithm use Computer vision and GPS (컴퓨터 비전과 GPS를 이용한 드론 자율 비행 알고리즘)

  • Kim, Junghwan;Kim, Shik
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.3
    • /
    • pp.193-200
    • /
    • 2016
  • This paper introduces an algorithm to middle-low price drone's autonomous navigation flight system using computer vision and GPS. Existing drone operative system mainly contains using methods such as, by inputting course of the path to the installed software of the particular drone in advance of the flight or following the signal that is transmitted from the controller. However, this paper introduces new algorithm that allows autonomous navigation flight system to locate specific place, specific shape of the place and specific space in an area that the user wishes to discover. Technology developed for military industry purpose was implemented on a lower-quality hobby drones without changing its hardware, and used this paper's algorithm to maximize the performance. Camera mounted on middle-low price drone will process the image which meets user's needs will look through and search for specific area of interest when the user inputs certain image of places it wishes to find. By using this algorithm, middle-low price drone's autonomous navigation flight system expect to be apply to a variety of industries.

Performance Evaluation of Safety Envelop Based Path Generation and Tracking Algorithm for Autonomous Vehicle (안전 영역 기반 자율주행 차량용 주행 경로 생성 및 추종 알고리즘 성능평가 연구)

  • Yoo, Jinsoo;Kang, Kyeongpyo;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.11 no.2
    • /
    • pp.17-22
    • /
    • 2019
  • This paper describes the tracking algorithm performance evaluation for autonomous vehicle using a safety envelope based path. As the level of autonomous vehicle technologies evolves along with the development of relevant supporting modules including sensors, more advanced methodologies for path generation and tracking are needed. A safety envelope zone, designated as the obstacle free regions between the roadway edges, would be introduced and refined for further application with more detailed specifications. In this paper, the performance of the path tracking algorithm based on the generated path would be evaluated under safety envelop environment. In this process, static obstacle map for safety envelope was created using Lidar based vehicle information such as current vehicle location, speed and yaw rate that were collected under various driving setups at Seoul National University roadways. A level of safety was evaluated through CarSim simulation based on paths generated with two different references: a safety envelope based path and a GPS data based one. A better performance was observed for tracking with the safety envelop based path than that with the GPS based one.

Two-Failure Gps Raim by Parity Space Approach (패러티 공간을 이용한 2개 GPS 파라미터 고장진단)

  • Yoo, Chang-Sun;Ahn, Iee-Ki;Lee,Sang-Jeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.6
    • /
    • pp.52-60
    • /
    • 2003
  • In aviation navigation using GPS, requirements on availability and integrity must be absolutely satisfied. Current study on accomplishing this integrity includes RAIM(Receiver Autonomous Integrity Monitoring), monitoring integrity internaIly in GPS receiver itself. Parity space technique as one of RAIM techniques has shown the advantages in fault detection and isolation due to each use of its magnitude and direction under the assumption of one fault. ln case of multiple fault, as biases in errors interact decreasing the effect of multiple fault in parity space, the exact fault detection and identification(FDI) may be difficult to be conducted. This paper focuses on FDI study on two faults and explains why parity space techniques applied on single fault is not adequate to the application of multiple fault case and shows that extended parity space technique may improve the performance of RAIM on two faults.

GPS and DR Navigation System for Unmanned 9round Vehicle (무인지상차량을 위한 GPS와 DR을 이용한 항법시스템)

  • 박대선;박정훈;지규인
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.75-75
    • /
    • 2000
  • Recently, number of navigation system using GPS and other complementary sensors has been developed to offer high-position accuracy. In this paper, an integration of GPS and Dead-Reckoning, which consists of a fiber optical gyroscope and two high-precision wheel-motor encoders for a unmanned navigation system, is presented. The main objective of this integrated GPS/DR unmanned navigation system is to provide accurate position and heading navigation data continuously for autonomous mobile robot. We propose a method for increasing the accuracy of the estimated position of the mobile robot by its DR sensors, high-precision wheel-motor encoders and a fiber optical gyroscope. We used Kalman filter theory to combine GPS and DR measurements. The performance of GPS/DR navigation system is evaluated.

  • PDF