• 제목/요약/키워드: Autonomous Control System

Search Result 949, Processing Time 0.031 seconds

Changes of Autonomous Nerves Activities after the Gyorae Gotjawal Forest Bathing (곶자왈휴양림 삼림욕 후 자율신경 활성의 변화)

  • Sin, Bangsik;Lee, Keun Kwang
    • Journal of Naturopathy
    • /
    • v.7 no.2
    • /
    • pp.39-46
    • /
    • 2018
  • Purpose: The purpose of this study was to evaluate the effect of the subjects after visiting the Gyorae forest on the activity of the autonomic nervous system. Methods: Before and after the forest bath, it was measured using a ubiquitous machine. Results: After the bath there was no significant difference in the sympathetic nerve activity (LF) of the control group, but the difference was significant in the experimental group by increasing (p<.038), and in the variance analysis, there was a significant difference between the groups (p<.014), between pre-and post-bath (p<.026), and also between the groups and pre-and post-bath (p<.018). The changes in parasympathetic activity (HF) were not significant in both the control and experimental. In the LF/HF ratio, the experimental group was significantly increased, and in the analysis of variance, there was also significant difference between group and before and after bath (p<.04). Mean pulse rate in the experimental group was a significant increase after bath (p<.026). In the change of pulse standard deviation, the value of the control and the experimental groups by variance analysis was a significant difference between the groups (p<.014). There was no difference between the mean values of the control and the experimental groups in the change of mean heart rate deviation. Conclusions: The autonomic nervous systems were activated after Gyorae forest bathing, where may be useful place for healing.

  • PDF

A 3-D Vision Sensor Implementation on Multiple DSPs TMS320C31 (다중 TMS320C31 DSP를 사용한 3-D 비젼센서 Implementation)

  • Oksenhendler, V.;Bensrhair, Abdelaziz;Miche, Pierre;Lee, Sang-Goog
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.124-130
    • /
    • 1998
  • High-speed 3D vision systems are essential for autonomous robot or vehicle control applications. In our study, a stereo vision process has been developed. It consists of three steps : extraction of edges in right and left images, matching corresponding edges and calculation of the 3D map. This process is implemented in a VME 150/40 Imaging Technology vision system. It is a modular system composed by a display, an acquisition, a four Mbytes image frame memory, and three computational cards. Programmable accelerator computational modules are running at 40 MHz and are based on TMS320C31 DSP with a $64{\times}32$ bit instruction cache and two $1024{\times}32$ bit internal RAMs. Each is equipped with 512 Kbytes static RAM, 4 Mbytes image memory, 1 Mbytes flash EEPROM and a serial port. Data transfers and communications between modules are provided by three 8 bit global video bus, and three local configurable pipeline 8 bit video bus. The VME bus is dedicated to system management. Tasks between DSPs are distributed as follows: two DSPs are used to edges detection, one for the right image and the other for the left one. The last processor computes the matching process and the 3D calculation. With $512{\times}512$ pixels images, this sensor generates dense 3D maps at a rate of about 1 Hz depending of the scene complexity. Results can surely be improved by using a special suited multiprocessors cards.

  • PDF

Navigation Control of Mobile Robot based on VFF to Avoid Local-Minimum in a Corridor Environment (복도환경의 지역최소점 회피가 가능한 VFF 기반의 이동로봇 주행제어)

  • Jin, Tae-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.4
    • /
    • pp.759-764
    • /
    • 2011
  • This paper deals with the method of using the amended virtual force field technique to avoidance the front environment(wall, obstacles etc.) in navigating by using the environmental informations recognized by a ultrasonic-ring and pan/tilt CCD camera equipped on a mobile robot. we will give an explanation for the robot system architecture designed and implemented in this study and a short review of existing techniques, since there exist several recent thorough books and review paper on this paper. It is proposed the rusult from the experimental run based on a virtual force field(VFF) method to support the validity of the aforementioned architecture of mobile service robot for local navigation and obstacle avoidance for autonomous mobile robots. We will conclude by discussing some possible future extensions of the project. The results show that the proposed algorithm is apt to identify obstacles in an indoor environments to guide the robot to the goal location safely.

Unmanned aerial vehicle routing algorithm using vehicular communication systems (차량 통신 시스템 기반 UAV 라우팅 알고리즘)

  • Kim, Ryul;Joo, Yang-Ick
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.7
    • /
    • pp.622-628
    • /
    • 2016
  • The prosperity of IT technologies and the removal of restrictions regarding Unmanned Aerial Vehicles (UAVs), also known as drones, have driven growth in their popularity. However, without a proper solution to the problem of accident avoidance for UAVs, this popularity increases the potential for collisions between UAVs and between UAV and terrain features. These collisions can occur because UAVs to date have flown using radio control or image recognition based autonomous navigation. Therefore, we propose efficient UAV routing schemes to tackle the collision problem using vehicular communication systems. Performance evaluation by computer simulation shows that the proposed methods effectively reduce the collision probability and improve the routing efficiency of the UAV. Furthermore, the proposed algorithms are compatible and can be directly applied with small overhead to the commercial vehicular communication system implementation.

Study on the line tracer robot applying the intellectual PID (지적 PID를 적용한 라인 트레이스 로봇에 관한 연구)

  • Lee, Dong-Heon;Kim, Min;Jeong, Jae-Hoon;Park, Won-Hyeon;Choi, Myoung-Hoon;Lim, Jae-Jun;Byun, Gi-Sik;Kim, Gwan-Hyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.731-733
    • /
    • 2016
  • The primary goal of the line tracer is to accurately and quickly detect the movement up to the target position given by the sensor juhaengseon. It has been used in applications in various fields such as the current unmanned transport vehicles, laser cutting machine, autonomous mobile robots and unmanned driving is possible, and is held annually at various universities in the competition field with the possibility of great progress, depending on the application. However, there arises a large difference in running performance, depending on the hardware design and control. In this paper, improving the characteristics of the tracer line and characters to design a PID controller is to apply the point on ways of improving the properties of the system.

  • PDF

Implementation of Underwater Entertainment Robots Based on Ubiquitous Sensor Networks (유비쿼터스 센서 네트워크에 기반한 엔터테인먼트용 수중 로봇의 구현)

  • Shin, Dae-Jung;Na, Seung-You;Kim, Jin-Young;Song, Min-Gyu
    • The KIPS Transactions:PartA
    • /
    • v.16A no.4
    • /
    • pp.255-262
    • /
    • 2009
  • We present an autonomous entertainment dolphin robot system based on ubiquitous sensor networks(USN). Generally, It is impossible to apply to USN and GPS in underwater bio-mimetic robots. But An Entertainment dolphin robot which presented in this paper operates on the water not underwater. Navigation of the underwater robot in a given area is based on GPS data and the acquired position information from deployed USN motes with emphasis on user interaction. Body structures, sensors and actuators, governing microcontroller boards, and swimming and interaction features are described for a typical entertainment dolphin robot. Actions of mouth-opening, tail splash or water blow through a spout hole are typical responses of interaction when touch sensors on the body detect users' demand. Dolphin robots should turn towards people who demand to interact with them, while swimming autonomously. The functions that are relevant to human-robot interaction as well as robot movement such as path control, obstacle detection and avoidance are managed by microcontrollers on the robot for autonomy. Distance errors are calibrated periodically by the known position data of the deployed USN motes.

A Study on Utilization of Drone for Public Sector by Analysis of Drone Industry (국내외 드론산업 동향 분석을 통한 공공분야에서의 드론 활용방안에 대한 연구)

  • Sim, Seungbae;Kwon, Hunyeong;Jung, Hosang
    • Journal of Information Technology Services
    • /
    • v.15 no.4
    • /
    • pp.25-39
    • /
    • 2016
  • The drone is an unmanned aerial vehicle which has no human pilot. Drones can be classified into military drones, commercial drones, and personal drones by usage. Also, drones can be classified from large-sized to nano-sized drone by size and autonomous, remote controlled drone by control type. Especially, military drones can be classified into low-altitude drones, medium-altitude, and high-altitude drones by altitude. Recently, the drone industry is one of the fast growing industries in the world. As drone technologies have become more advanced and cost-effective, Korean government has set its goal to become a top-level country in drone business. However, the government's strict regulation for drone operations is one of the biggest hurdles for the development of the related technologies in Korea and other countries. For example, critical problems for drone delivery can be classified into technical issues and institutional issues. Technical issues include durability, conditional awareness, grasp and release mechanisms, collision avoidance systems, drone operating system. Institutional issues include pilot and operator licensing, privacy rules, noise guidelines, security rules, education for drone police. This study analyzes the trends of the drone industry from the viewpoint of technology and regulation. Also, we define the business areas of drone utilization. Especially, the drone business types or models for public sector are proposed. Drone services or functions promoting public interests need to be aligned with the business reference model of Korean government. To define ten types of drone uses for public sector, we combine the business types of government with the future uses of drones that are proposed by futurists and business analysts. Future uses of drones can be divided into three sectors or services. First, drone services for public or military sectors include early warning systems, emergency services, news reporting, police drones, library drones, healthcare drones, travel drones. Second, drone services for commercial or industrial services include parcel delivery drones, gaming drones, sporting drones, farming and agriculture drones, ranching drones, robotic arm drones. Third, drone services for household sector include smart home drones.

Generating an Autonomous Landing Testbed of Simulated UAV applied by GA (GA를 적용한 모의 UAV의 자율착륙 테스트베드 구축)

  • Han, Changhee
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.1
    • /
    • pp.93-98
    • /
    • 2019
  • In case of unmanned aerial vehicles used in modern society, there has been a problem where a human operator should be still needed to control the UAV because of a lower level of autonomy. In this paper, genetic algorithm is selected as a methodology for the autonomy accomplishment and then we verify a possibility of UAV autonomy by applying the GA. The landing is one of the important classical tasks on aerial vehicle and the lunar Landing is one of the most historical events. Autonomy possibility of computer-simulated UAV is verified by landing autonomy method of a falling body equipped with a propulsion system similar to the lunar Lander. When applying the GA, the genom is encoded only with 4 actions (left-turn, right-turn, thrust, and free-fall) and applied onto the falling body, Then we applied the major operations of GA and achieved a success experiment. A major contribution is to construct a simulated UAV where an autonomy of UAV can be accomplished while minimizing the sensor dependency. Also we implemented a test-bed where the possibility of autonomy accomplishment by applying the GA can be verified.

Development of Autonomous Logistics Transportation System using Raspberry Pi (라즈베리파이를 이용한 자율물류 운반 시스템 개발)

  • Kang, Young-Hoon;Park, Chang-Hyeon;Lee, Min-Woo;Kim, Da-Eun;Lee, Seung-Dae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.1
    • /
    • pp.125-132
    • /
    • 2022
  • In this paper, we presented a cart which can automatically transport loads to the distribution center of the appointed indoor place, based on Raspberry pi 4. It can recognize the obstacles by using the ultrasonic sensors so that it prevents the collision and takes a detour. Further, we entered the direction control code in the RFID. It has installed at important points such as the intersections of the destinations, so that if the RFID reader of the cart senses the RFID, the cart would stop or change the direction. After the transportation, if the load cell(weight sensor) recognizes that the baggage is unloaded, the cart returns to the initial point and would be retrieved. Therefore, we embodied the transportation cart which reduces the use of manpower and solves the problems conveniently across the transportation strategies.

Effects of the Forest Healing Program on Depression, Cognition, and the Autonomic Nervous System in the Elderly with Cognitive Decline

  • Lim, Young-suwn;Kim, Jaeuk;Khil, Taegyu;Yi, Jiyune;Kim, Dong-jun
    • Journal of People, Plants, and Environment
    • /
    • v.24 no.1
    • /
    • pp.107-117
    • /
    • 2021
  • Background and objective: The purpose of this study is to investigate the effect of a forest healing program in terms of depression, neuropsychological and physiological benefits for the elderly. Methods: For this purpose, we developed a forest therapy program for the elderly who are vulnerable to dementia and conducted a total of 11 sessions of forest therapy activities in a forest once a week. We measured the changes in depression, resting-state Electroencephalography(EEG) and heart rate variability (HRV) before and after the program. There were 60 subjects aged over 65 yesrs old. 30 subjects participated in the forest therapy program, and the other were in the control group. The Geriatric Depression Scale was used to measure the level of depression, neuroNicle FX2 (Laxtha, Korea) was used to measure the resting-state EEG, and photoplethymogram (ubpulse T1, Laxtha, Korea) was used to measure the HRV. Results: The results showed that the depression index of the experimental group improved with statistical significance after the program (experiment group = 3.267 decrease of the mean). In the EEG measurement, the alpha-peak frequency at rest (experimental group = 0.227 Hz increase of the mean) was improved (mean increase = 0.23 in the experimental group, p < .05). The high frequency of HRV, which represents the parasympathetic nerve activity of the body's autonomous response, was also significantly improved (mean increase = 0.396 in the experimental group, p < .05). Conclusion: The results suggest that the forest therapy program can reduce the cognitive, psychological and physical risk factors of dementia for the elderly at risk of cognitive decline. Therefore, forest therapy activities may be suitable for the prevention of dementia in the elderly.