• 제목/요약/키워드: Automotive system

검색결과 4,197건 처리시간 0.033초

자작형 하이브리드카의 제작 및 제어에 관한 연구 (A Study on Manufacture and Control of a Self Manufacturing Hybrid Electric Vehicle)

  • 김학선;정찬세;양순용
    • 한국자동차공학회논문집
    • /
    • 제20권1호
    • /
    • pp.8-13
    • /
    • 2012
  • In this paper, Hybrid Electric Vehicle is directly designed and manufactured for base study of HEV's system and Green Car. Foundation design consists of power train design and the frame design. The power train concept includes motor, engine, generator and battery. And the concept of the frame is the single-seat of this self-made HEV. A frame installed in hybrid system contains suspension, steering wheel, seat, accelerating pedal, brake pedal, clutch handle and various chassis parts with bearings. Electromagnetic clutch is equipped to transmit engine power to drive axle. The control algorism make using LabVIEW to control of an engine and a motor depending on drive condition. A parallel type hybrid system is manufactured to control operation of a motor and an engine depending on vehicle speed.

DEVELOPMENT OF TIMING ANALYSIS TOOL FOR DISTRIBUTED REAL-TIME CONTROL SYSTEM

  • Choi, J.B.;Shin, M.S.;M, Sun-Woo
    • International Journal of Automotive Technology
    • /
    • 제5권4호
    • /
    • pp.269-276
    • /
    • 2004
  • There has been considerable activity in recent years in developing timing analysis algorithms for distributed real-time control systems. However, it is difficult for control engineers to analyze the timing behavior of distributed real-time control systems because the algorithms was developed in a software engineer's position and the calculation of the algorithm is very complex. Therefore, there is a need to develop a timing analysis tool, which can handle the calculation complexity of the timing analysis algorithms in order to help control engineers easily analyze or develop the distributed real-time control systems. In this paper, an interactive timing analysis tool, called RAT (Response-time Analysis Tool), is introduced. RAT can perform the schedulability analysis for development of distributed real-time control systems. The schedulability analysis can verify whether all real-time tasks and messages in a system will be completed by their deadlines in the system design phase. Furthermore, from the viewpoint of end-to-end scheduling, RAT can perform the schedulability analysis for series of tasks and messages in a precedence relationship.

자동차 조립 공정계획을 위한 Web 기반 협업시스템 (Web-based Collaborative Process Planning System for the Automotive General Assembly Shop)

  • 노상도;박영진;공상훈;이교일
    • 산업공학
    • /
    • 제16권3호
    • /
    • pp.375-381
    • /
    • 2003
  • To ensure competitiveness in the modern automotive market, process planning should be performed concurrently with new car developments. In automotive general assembly shops, thus, new business workflows and supporting environments are inevitable to reduce the manufacturing preparation time in developing a new car in the manner of concurrent and collaborative engineering. Since complete process planning for a whole general assembly system is a huge and complex job, several process planners should execute their planning jobs and share information. Therefore, each planner should provide others with his/her results with continuous on-line communication and cooperation. In this research, a web-based system for concurrent and collaborative process planning for automotive general assembly is developed. By using this system, savings in time and cost of assembly process planning are possible, and the reliability of the planning result is improved.

상용 ABS와 성능비교를 통한 슬라이딩 모드 제어기의 제동성능 분석 (Brake Performance Analysis of Sliding Mode Controller by Comparing with a Commercial Anti-lock Brake System)

  • 윤득선;백승환;김흥섭;송정훈;부광석
    • 한국자동차공학회논문집
    • /
    • 제18권2호
    • /
    • pp.14-23
    • /
    • 2010
  • This paper analyzes braking performance of ABS with Sliding Mode Controller, which is designed in this research and compared with that of a commercial ABS-ECU only. HILS system for this paper has an existing hydraulic brake line with an ECU of commercial passenger vehicle and it is designed to be cooperated with Sliding Mode Controller and hydraulic line. This paper shows the simulation results to meet the target slip ratio on the various road conditions and displays the performance with Sliding Mode Controller has an improvement than a commercial ABS.

Motion Control of Omnidirectional Mobile Platform for Path Following Using Backstepping Technique

  • Dinh, Viet-Tuan;Thinh, Doan-Phuc;Hoang, Giang;Kim, Hak-Kyeong;Oh, Sea-June;Kim, Sang-Bong
    • 한국해양공학회지
    • /
    • 제25권5호
    • /
    • pp.1-8
    • /
    • 2011
  • This paper proposes a controller design for an omnidirectional mobile platform (OMP) with three wheels using backstepping control. A kinematic model and dynamic model of the system are presented. Based on the dynamic modeling, a backstepping controller is designed to stabilize the OMP when following a desired path. The controller is designed based on a backstepping control theory. It includes two steps: first, a virtual state and a stability function are introduced. Second, Lyapunov functions for the system are chosen and an equation for the virtual control that makes the system stabile is obtained. The system stability is guaranteed by the Lyapunov stability theory. The simulation and experimental results are presented to demonstrate the effectiveness of the proposed controller.

Net-HILS를 이용한 네트워크기반 구동력제어시스템 개발 및 성능평가에 관한 연구 (Development of Network-based Traction Control System and Study its on Performance Evaluation using Net-HILS)

  • 류정환;윤마루;황인용;선우명호
    • 한국자동차공학회논문집
    • /
    • 제14권5호
    • /
    • pp.47-57
    • /
    • 2006
  • This paper presents a network-based traction control system(TCS), where several electric control units (ECUs) are connected by a controller area network(CAN) communication system. The control system consists of four ECUs: the electricthrottle controller, the transmission controller, the engine controller and the traction controller. In order to validate the traction control algorithm of the network-based TCS and evaluate its performance, a Hardware-In-the-Loop Simulation(HILS) environment was developed. Herein we propose a new concept of the HILS environment called the network-based HILS(Net-HILS) for the development and validation of network-based control systems which include smart sensors or actuators. In this study, we report that we have designed a network-based TCS, validated its algorithm and evaluated its performance using Net-HILS.

OSEK/VDX 표준과 CAN 프로토콜을 사용한 차체 네트웍 시스템 개발 (Development of a Body Network System with GSEK/VDX Standards and CAN Protocol)

  • 신민석;이우택;선우명호;한석영
    • 한국자동차공학회논문집
    • /
    • 제10권4호
    • /
    • pp.175-180
    • /
    • 2002
  • In order to satisfy the requirements of time reduction and cost saving for development of electronic control systems(ECU) in automotive industry, the applications of a standardized real-time operating system(RTOS) and a communication protocol to ECUs are increased. In this study, a body control module(BCM) that employs OSEK/VDX(open system and corresponding interfaces for automotive electronics/vehicle distributed executive) OS tour the RTOS and a controller area network(CAN) fur the communication protocol is designed, and the performances of the system are evaluated. The BCM controls doors, mirrors, and windows of the vehicle through the in-vehicle network. To identify all the transmitted and received control messages, a PC connected with the CAN communication protocol behaves as a CAN bus emulator. The control system based upon in-vehicle network improves the system stability and reduces the number of wiring harness. Furthermore it is easy to maintain and simple to add new features because the system is designed based on the standards of RTOS and communication protocol.