• Title/Summary/Keyword: Automotive inverter

Search Result 67, Processing Time 0.025 seconds

Design Considerations for Low Voltage Claw Pole Type Integrated Starter Generator (ISG) Systems

  • Lee, Geun-Ho;Choi, Geo-Seung;Choi, Woong-Chul
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.527-532
    • /
    • 2011
  • Due to the need for improved fuel consumption and the trend towards increasing the electrical content in automobiles, integrated starter generator (ISG) systems are being considered by the automotive industry. In this paper, in order to change the conventional generator of a vehicle, a belt driven integrated starter generator is considered. The overall ISG system, the design considerations for the claw pole type AC electric machine and a low voltage very high current power stage implementation are discussed. Test data on the low voltage claw pole type machine is presented, and a large current voltage source DC/AC inverter suitable for low voltage integrated starter generator operation is also presented. A metal based PCB (Printed Circuit Board) power unit to attach the 4-parallel MOS-FETs is used to achieve extremely high current capability. Furthermore, issues related to the torque assistance during vehicle acceleration and the generation/regeneration characteristics are discussed. A prototype with the capability of up to 1000 A and 27 V is designed and built to validate the kilo-amp inverter.

A Study on Accelerated Fatigue Life Testing for Industrial Inverter (산업용 인버터의 가속 피로수명 평가에 관한 연구)

  • Lee, Sanghoon;Kim, Won-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.6
    • /
    • pp.67-73
    • /
    • 2022
  • Industrial inverters are used in a variety of fields for electric power supply. They may be exposed to vibration and heat once they are installed. This study focused on a framework of accelerated life testing of an industrial inverter considering fatigue damage as the primary source of deterioration. Instead of analyzing detailed failure mechanisms and the product's vulnerability to them, the potential of fatigue failure is considered using the fatigue damage spectrum calculated from the environmental vibration signals. The acceleration and temperature data were gathered using field measurement and spectral analysis was conducted to calculate the vibration signal's power spectral density (PSD). The fatigue damage spectrum is then calculated from the input PSD data and is used to design an accelerated fatigue life testing. The PSD for the shaker table test is derived that has the equivalent fatigue damage to the original input signal. The tests were performed considering the combined effect of random vibration and elevated temperature, and the product passed all the planned tests. It was successfully demonstrated that the inverter used in this study could survive environmental vibration up to its guarantee period. The fatigue damage spectrum can effectively be used to design accelerated fatigue life testing.

Development of Wound Rotor Synchronous Motor for Belt-Driven e-Assist System

  • Lee, Geun-Ho;Lee, Heon-Hyeong;Wang, Qi
    • Journal of Magnetics
    • /
    • v.18 no.4
    • /
    • pp.487-493
    • /
    • 2013
  • The automotive industry is showing widespread interest in belt-driven electric motor-assisted (e-Assist) systems. A belt-driven assist system (BAS) starts and assists the combustion engine in place of the conventional generator. In this study, a water-cooled wound rotor synchronous motor (WRSM) for the e-Assist system was designed and analyzed. The performance of the WRSM was compared with that of an interior permanent magnet synchronous motor (IPMSM). The WRSM efficiency can be improved for the BAS by adjusting the field flux at high speeds. The field current map to obtain the maximum efficiency based on the speed and torque was developed. To control the field flux via field current control in the WRSM, a general H-bridge circuit was added to the WRSM inverter to get the rapid current response in the high-speed region; the characteristics were compared with the chopper circuit. A WRSM developed for the belt-driven e-Assist system and a prototype 115 V power electronic converter to drive the WRSM were tested with a 900 cc combustion engine. The test results showed that the WRSM-type e-Assist system had good characteristics and could successfully start and assist the 900 cc combustion engine.

Development of Electronic Ballast for Automotive High Intensity Discharge Lamp (자동차 헤드라이트용 전자식 안정기 개발)

  • 박종연;배수호;조계현
    • Proceedings of the IEEK Conference
    • /
    • 2002.06e
    • /
    • pp.319-322
    • /
    • 2002
  • In this Paper, we suggested the Half-Bridge inverter for the automotive HID electronic ballast. electronic ballast for automotive HID lamp should be supplied by low-frequency square wave avoiding the acoustic resonance(11kHz ∼ 825kHz). When the HID lamp is hot state, the electronic ballast should supply the sufficient current for a few milli-second to the lamp at the re-strike ignition state. that is called take-over current. We have introduced the new take-over current control method that could have reduced the peak current and supplied the sufficient take-over current.

  • PDF

ELECTRONIC BALLAST FOR MHD LAMPS OF AUTOMOTIVE HEADLIGHT (자동차 헤드라이트용 MHD 램프등의 전자의 안정기)

  • Park, Chong-Yeun;Ju, Byung-Hun
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3129-3131
    • /
    • 1999
  • The electronic ballast for MHD lamp was studied for automotive headlight application. Its basic principle is the Current Sourcing Push-Pull Resonant Inverter with DC I2Volt input Voltage. By changing the switching frequency according to the lamp state, the automotive requirement of very fast warm-up and the zero voltage switching condition were shown by the simulation of the ballast circuit.

  • PDF

High-Reliability Three-Phase Dual-Buck Grid-Connected Inverter without Shoot-Through Problem

  • Fu, Zhenbin;Feng, Zhihua;Chen, Xi;Zheng, Xinxin
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.454-462
    • /
    • 2019
  • When compared to traditional bridge-type inverters, the dual-buck inverter has a higher reliability due to the fact that its bridge legs do not have a shoot-through problem. In this paper, the working principle of the dual-buck inverter is analyzed. A comparison of the working modes under full-cycle and half-cycle control is discussed. With half-cycle control, the inverter can realize a higher efficiency. However, this results in current zero-crossing distortion. The corresponding control strategy of the dual-buck inverter is proposed in order to realize both high efficiency and low current harmonic distortion. In addition, the system stability is analyzed. Dead-time is unnecessary due to the advantages of the topology. Thus, the current harmonic distortion can be further reduced. An inverter with the proposed control strategy has the advantages of high reliability, high efficiency and low current harmonic distortion. Finally, simulation and experimental results are given to verify the theoretical analysis.

Improvement of Middle or High Speed Restart Performance Using Hall Sensor for the Sensorlessly Controlled IPMSM Fan motor (센서리스 제어방식 IPMSM 팬 모터의 홀센서를 이용한 중·고속 재기동 성능개선)

  • Lee, J.H.;Jung, Y.S.
    • Journal of Power System Engineering
    • /
    • v.16 no.6
    • /
    • pp.73-78
    • /
    • 2012
  • This paper investigates the restart performance of sensorlessly controlled IPMSM Fan motor free-running in middle or high speed range just after inverter power off. There could be some difficulties to extract exact position information by using conventional sensorless control for restarting the motor because of stopped inverter operation. To solve this problem, we proposes to use low cost hall sensor. Using a hall sensor with SMO (Sliding Mode Observer) give us a solution to facilitate rotor position information extraction. The algorithm in this paper shows a certain way of the restarting method.

DEVELOPMENT OF INTELLIGENT POWER UNIT FOR HYBRID FOUR-DOOR SEDAN

  • Aitaka, K.;Hosoda, M.;Nomura, T.
    • International Journal of Automotive Technology
    • /
    • v.4 no.2
    • /
    • pp.57-64
    • /
    • 2003
  • The Intelligent Power Unit (IPU) utilized in Honda's Civic Hybrid Integrated Motor Assist (IMA) system was developed with the aim of making every component lighter, more compact and more efficient than those in the former model. To reduce energy loss, inverter efficiency was increased by fine patterning of the Insulated Gate Bipolar Transistor (IGBT) chips, 12V DC-DC converter efficiency was increased by utilizing soft-switching, and the internal resistance of the IMA battery was lowered by modifying the electrodes and the current collecting structure. These improvements reduced the amount of heat generated by the unit components and made it possible to combine the previously separated Power Control Unit (PCU) and battery cooling systems into a single system. Consolidation of these two cooling circuits into one has reduced the volume of the newly developed IPU by 42% compared to the former model.

Development of Nonlinear Inverter Model for Fast Dynamic Analysis of Electric Power Steering with PMSM Drive System (자동차 전자식 조향장치용 PMSM 구동 시스템의 신속한 동적해석을 위한 비선형 인버터 모델 개발)

  • Choi, Chin-Chul;Lee, Woo-Tiak;Hong, Jeong-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1132-1133
    • /
    • 2007
  • A circuit-domain model of PWM inverter provides accurate simulation results in consideration of detail switching characteristics. Although, a huge amount of computation time is demanded for the simulation results of several ten seconds, which is the required time to analyze system behaviors or control performances of Electric Power Steering(EPS) on real drive condition. This paper describes the nonlinear inverter model for fast dynamic simulation of EPS without the PWM concept through analyzing the effect of nonlinear switching characteristics like dead time, forward voltage drop and conduction resistance. Some inverter models including proposed model are compared from two standpoints which are computation time and accuracy. The comparison results show the usefulness of the developed model in order to develop the control algorithm through the fast prediction of system behaviors.

  • PDF

A Numerical Analysis for the Heat Transfer Prediction of inverter system (인버터 기동반의 열전달 예측을 위한 수치해석)

  • Kim, Myoung Soo;Kim, Man Seok;Choi, Hyoung Gwon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.2
    • /
    • pp.57-62
    • /
    • 2014
  • In the study, a numerical analysis is conducted to investigate the heat transfer characteristics of an inverter system inside a panel for three locations (bottom, middle and top). A conjugate heat transfer is simulated using a CFD (computational fluid dynamics) code since the heat transfer through the surrounding panel walls is important. It is shown that the heat flux through the left wall, which is important for the safety of the electronic equipment, is the biggest when the inverter is located at bottom. On the other hand, the heat flux through the left wall is negligible when the inverter at middle or top. It is also found that the heat flux to the surrounding walls is the lowest when the inverter is at middle.