• Title/Summary/Keyword: Automotive fuel

Search Result 1,720, Processing Time 0.033 seconds

Experimental Study on Single Channel DPF Device Applying the Method of Internal 2-Way Rotary Valve (회전형 밸브를 적용한 단일채널내 2-Way 방식의 DPF장치에 대한 실험적 연구)

  • Ham, Seong-Hun;Youm, Kwang-Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.6
    • /
    • pp.110-115
    • /
    • 2015
  • In this paper it is proposed to solve the problem of particulate matter reducing apparatus of the current DPF. One exhaust gas passage 2-way controlled to purify the exhaust gas generated during combustion efficiently. Through the control of the rotary valve within a single device, it is possible to prevent the exhaust pressure increases due to particulate matter accumulate inside the developing DPF. Develop DPF device capable of inducing a high efficiency of the output in order to improve the problem of reducing the engine output and fuel efficiency.

Control of Heat Pump for Low Emission Diesel Engine (저공해 중소형 디젤차량 히트펌프 제어)

  • Park, Byung-Duck;Lee, Won-Suk;Won, Jong-Phil;Kwon, Sun-Ik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.5 no.4
    • /
    • pp.379-384
    • /
    • 2002
  • As automotive diesel engines adopt the direct injection method for a lower level of the exhaust emission and a higher fuel efficiency, the maximum temperature of engine coolant decreases. Consequently, the total available heat source from the engine coolant decreases over 35%. However, the heating source of air-conditioning system in automobiles depends on the hot engine coolant completely, so that it is nearly impossible to control air conditioning in heating season. Therefore, the present study has been carried out to develop the air conditioning system for the high efficient heat pump type using the HFC-134a. Especially, the air conditioning system of heating has been developed at a beginning stage, when it has low heat source from small and medium sized diesel recreation vehicles. To develop a control logic system for air conditioning system which is a heat pump type with a heat recovery exchanger, its cycle characteristics has been investigated according to the opening of LEV at a bench system.

  • PDF

Optimization of the Durability Performance of a 17cc Automotive Compressor (17cc급 자동차용 압축기 내구성능 최적화에 관한 연구)

  • Yang, Yong-Kun;Wu, Yu-Ting;Qin, Zhen;Lyu, Sung-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.3
    • /
    • pp.68-75
    • /
    • 2021
  • The fuel economy is a key issue for the automotive industry due to environmental concerns. In particular, only 5-20% of the energy generated in a car using an internal combustion engine is used as power, and the remaining energy is dissipated due to friction with other parts. The main components in the reciprocating piston type compressors commonly used in general vehicles include shafts, swash plates, pistons, and cylinders, and severe friction loss occurs due to the contact of these components. Generally, the wear contact is the maximum between the shaft and cylinder and between the piston and swash plate. The friction of these parts may cause quality problems and deteriorate the durability. In this study, to reduce the frictional loss, a prototype with additional coating agents was produced. Moreover, an optimized design was generated, and performance, noise, and durability tests were conducted. A more durable product was successfully obtained.

A numerical study of the air fuel ratio effect on the combustion characteristics in a MILD combustor (공연비 변화가 MILD 연소 특성에 미치는 영향에 관한 해석적 연구)

  • Ha, Ji-Soo;Kim, Tae-Kwon;Shim, Sung-Hoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.6
    • /
    • pp.587-592
    • /
    • 2010
  • A numerical analysis of reactive flow in a MILD(Moderate and Intense Low oxygen Dilution) combustor is accomplished to elucidate the characteristics of combustion phenomena in the furnace with the variation of air fuel ratio. For the smaller magnitude of air injection velocity(10 m/s), the air flow could not penetrate toward upper part of furnace. On the other hand, the air flow suppresses the fuel flow for the case of air injection velocity 30 m/s. The air velocity 18 m/s is corresponding to the stoichiometric air flow velocity, and for that case, the air flows to relatively more upper part of the furnace when compared with the case of air injection velocity 10 m/s. The reaction zone is produced with the previous flow pattern, so that the reaction zone of the air injection velocity 10 m/s is biased to the air nozzle side and for the case of air injection velocity 30 m/s, the reaction zone is inclined to the fuel nozzle side. For the cases with the air injection velocities 16, 18, 20 m/s, the reaction zone is nearly located at the center between air nozzle and fuel nozzle. The maximum temperatures and NOx concentrations for the cases of air injection velocity 16, 18, 20 m/s are lower than the cases with air injection velocity 10, 30 m/s. From the present study, the stoichiometric air fuel ratio is considered as the most optimal operating condition for the NOx reduction.

A study on characteristics of combustion and exhaust emissions on bio-diesel fuel in marine diesel generator engine (Low load centering) (선박용 디젤발전기에서 바이오연료의 연소 및 배기배출물 특성에 관한 연구 (저부하 영역 중심으로))

  • Cho, Sang-Gon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.7
    • /
    • pp.716-721
    • /
    • 2015
  • As the severity of environmental pollution has increased, restrictions on air pollution have been strengthened. Stringent regulations have been imposed, not only on marine diesel engines but also on automotive and industrial power plants. Thus, biofuels have been directly applied in practical engines and used in training ships for basic research. Even though a high biofuel percentage cannot be used in a training ship engine for safety reasons, because this type of engine is larger than those used in institutional laboratories, the results will provide important basic information that will allow organizations to determine the status of a large output. Biodiesel fuel was studied to determine how it would affect the combustion characteristics and exhaust emissions of a marine diesel generator engine. The main results can be summarized as follows. Because the physical and chemical compositions of biofuels are similar to those of diesel fuel, it was found that their practical use was possible in a training ship. The specific fuel consumption and NOx increased, whereas a tendency was found for carbon monoxide and soot to decrease. In addition, no significant pressure change difference was found between the diesel fuel and biofuels.

A Numerical Study of the Combustion Characteristics in a MILD Combustor with the Change of the Fuel and Air Nozzle Position and Air Mass Flow Rate (연료 및 공기 노즐 위치와 공기 유량 변화에 따른 MILD 연소 특성에 관한 해석적 연구)

  • Kim, Tae-Kwon;Shim, Sung-Hoon;Chang, Huyk-Sang;Ha, Ji-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.5
    • /
    • pp.325-331
    • /
    • 2011
  • A numerical analysis of reactive flow in a MILD(Moderate and Intense Low oxygen Dilution) combustor is accomplished to elucidate the characteristics of combustion phenomena in the furnace with the change of fuel and air nozzle position and air mass flow rate. For the case with the fuel nozzle located near center position of combustor, the reaction zone started at the fuel nozzle and had inclined shape toward combustor wall when the air mass flow rate was relatively smaller. On the other hand, the end of reaction zone moved toward center of combustor from combustor wall when the air flow rate was relatively larger. For the case with the air nozzle located near center position of combustor, the reaction zone started at the fuel nozzle and had inclined shape toward combustor wall when the air mass flow rate was relatively small, which was similar as the previous case with smaller air mass flow rate. On the other hand, the end of reaction zone moved toward combustor wall when the air flow rate was relatively larger. The maximum temperature increased as the air mass flow rate increasing for both cases, and the concentration of thermal NOx increased also from the previous reason of temperature characteristics. The concentration of NOx for the case with the air nozzle located near center position of combustor was considerably smaller than that for the case with the fuel nozzle located near center position of combustor. From the present study, the case with the air nozzle located near center position of combustor and theoretical air flow rate was the most effective condition for the NOx reduction and perfect combustion.

Study of Combustion Characteristics with Variations of Combustion Parameter in Ultra-Lean LPG Direct Injection Engine (연소제어인자의 변화에 따른 직접분사식 초희박 LPG엔진의 연소특성 연구)

  • Park, Yun Seo;Park, Cheol Woong;Oh, Seung Mook;Kim, Tae Young;Choi, Young;Lee, Yong Gyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.6
    • /
    • pp.607-614
    • /
    • 2013
  • Nowadays, automotive manufacturers have developed various technologies to improve fuel economy and reduce harmful emissions. The ultra-lean direct injection engine is a promising technology because it has the advantage of improving thermal efficiency through the deliberate control of fuel and ignition. This study aims to investigate the development of a spray-guided-type lean-burn LPG direct injection engine through the redesign of the combustion system. This engine uses a central-injection-type cylinder head in which the injector is installed adjacent to the spark plug. Fuel consumption and combustion stability were estimated depending on the ignition timing and injection timing at various air-fuel ratios. The optimal injection timing and ignition timing were based on the best fuel consumption and combustion stability.

Combustion of Diesel Particulate Matters under Mixed Catalyst System of Fuel-Borne Catalyst and Perovskite: Influence of Composition of Perovskite (La1-x A'xBO3: A' = K, Sr; 0 ≤ x ≤ 1; B = Fe, Cr, Mn) on Combustion Activity (Fuel-Borne Catalyst와 Perovskite로 구성된 복합촉매 시스템에 의한 디젤 탄소입자상 물질의 연소반응: 반응성능과 Perovskite 촉매조성 (La1-x A'xBO3: A' = K, Sr; 0 ≤ x ≤ 1; B = Fe, Cr, Mn)의 상관관계)

  • Lee, Dae-Won;Sung, Ju Young;Lee, Kwan-Young
    • Korean Chemical Engineering Research
    • /
    • v.56 no.2
    • /
    • pp.281-290
    • /
    • 2018
  • As the internal combustion engine vehicles of high fuel efficiency and low emission are demanded, it becomes important to procure technologies for improving low-temperature performance of automotive catalyst systems. In this study, we showed that the combustion rate of diesel particulate matter is greatly enhanced at low temperature by applying fuel-borne catalyst and perovskite catalyst concurrently. It was tried to examine the correlation between elemental composition of perovskite catalyst and combustion activity of mixed catalyst system. To achieve this goal, we applied temperature-programmed oxidation technique in testing the combustion behavior of perovskite-mixed particulate matter bed which contained the element of fuel-borne catalyst or not. We tried to explain the synergetic action of two catalyst components by comparing the trends of concentrations of carbon dioxide and nitrogen oxide in temperature-programmed oxidation results.

A Study on the Emissions Characteristics of a LPG Vehicle According to Various Test Modes and Ambient Conditions (다양한 시험모드와 환경조건에 따른 LPG 차량의 배출특성 연구)

  • Lee, Min-Ho;Ha, Jong-Han
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.4
    • /
    • pp.1-7
    • /
    • 2015
  • As the interest on the air pollution is gradually rising up at home and abroad, automotive and fuel researchers have been working on the exhaust emission reduction from vehicles through a lot of approaches, which consist of new engine design, innovative after-treatment systems, using clean (eco-friendly alternative) fuels and fuel quality improvement. This research has brought forward various main issues : whether PM emissions should be regulated for diesel and gasoline vehicles and whether gasoline and LPG powered vehicles can be further neglected from PM emission inventories. Finally, the greenhouse gas regulation has been discussed including automotive emission regulation. The greenhouse gas and emissions of automotive had many problem that cause of ambient pollution, health effects. Based on various test modes and ambient conditions, this paper discusses the characteristics of LPG on exhaust emissions and greenhouse gases. Also, this paper assessed emission characteristics due to the test temperature. These test temperature were performed by dividing the temperature of the test mode and the lowest local temperature in winter. Through this study, the correlation of vehicle test mode and ambient condition, exhaust emission, greenhouse gas emission was analyzed.

Prediction of field failure rate using data mining in the Automotive semiconductor (데이터 마이닝 기법을 이용한 차량용 반도체의 불량률 예측 연구)

  • Yun, Gyungsik;Jung, Hee-Won;Park, Seungbum
    • Journal of Technology Innovation
    • /
    • v.26 no.3
    • /
    • pp.37-68
    • /
    • 2018
  • Since the 20th century, automobiles, which are the most common means of transportation, have been evolving as the use of electronic control devices and automotive semiconductors increases dramatically. Automotive semiconductors are a key component in automotive electronic control devices and are used to provide stability, efficiency of fuel use, and stability of operation to consumers. For example, automotive semiconductors include engines control, technologies for managing electric motors, transmission control units, hybrid vehicle control, start/stop systems, electronic motor control, automotive radar and LIDAR, smart head lamps, head-up displays, lane keeping systems. As such, semiconductors are being applied to almost all electronic control devices that make up an automobile, and they are creating more effects than simply combining mechanical devices. Since automotive semiconductors have a high data rate basically, a microprocessor unit is being used instead of a micro control unit. For example, semiconductors based on ARM processors are being used in telematics, audio/video multi-medias and navigation. Automotive semiconductors require characteristics such as high reliability, durability and long-term supply, considering the period of use of the automobile for more than 10 years. The reliability of automotive semiconductors is directly linked to the safety of automobiles. The semiconductor industry uses JEDEC and AEC standards to evaluate the reliability of automotive semiconductors. In addition, the life expectancy of the product is estimated at the early stage of development and at the early stage of mass production by using the reliability test method and results that are presented as standard in the automobile industry. However, there are limitations in predicting the failure rate caused by various parameters such as customer's various conditions of use and usage time. To overcome these limitations, much research has been done in academia and industry. Among them, researches using data mining techniques have been carried out in many semiconductor fields, but application and research on automotive semiconductors have not yet been studied. In this regard, this study investigates the relationship between data generated during semiconductor assembly and package test process by using data mining technique, and uses data mining technique suitable for predicting potential failure rate using customer bad data.