• Title/Summary/Keyword: Automotive Seat Structure

Search Result 20, Processing Time 0.028 seconds

A Study on the Lightweight Design of a Seat Frame in Automotive Vehicles (자동차 시트 프레임의 경량화 설계에 관한 연구)

  • 최금호
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.5
    • /
    • pp.83-89
    • /
    • 1999
  • A seat frame structure in automotive vehicles made of polymer matrix composite to achieve weight reduction at low cost was developed. In order to design and manufacture the actual product studies on material selection and structural analysis were performed. Structural analysis was performed with a finite element method. The analysis was done for several cases suggested in various safety regulations. Each results was utilized to modify the actual shape to obtain a lighter, safer and more stable design. The final design was used to produce a sample bottom plate of the seat structure with reinforced by X-shape frame. Substitution of the material resulted in a weight reduction effect with equivalent strength fatigue and impact characteristics.

  • PDF

Evaluation of Ride Comfort Considering Seat and Ride Vibration Modes (주행 진동 모드와 시트 진동을 고려한 추행 안락감 분석)

  • 김명규;유완석;김정훈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.93-99
    • /
    • 2002
  • Ride comfort, one of the most important performances of a car, is affected by vibration, noise, dynamic movement, and ergonomic factors. Among these factors, ride comfort vibration is heavily affected by the seat system, tire, suspension, and body structure. In this study, vibration characteristics of seat, tire, suspension, and body structure are analyzed. The vibration transfer function from the road input to the human body is also investigated.

PROCESS OF DESIGNING BODY STRUCTURES FOR THE REDUCTION OF REAR SEAT NOISE IN PASSENGER CAR

  • Kim, K.C.;Kim, C.M.
    • International Journal of Automotive Technology
    • /
    • v.8 no.1
    • /
    • pp.67-73
    • /
    • 2007
  • This study analyzes the interior noise that is generated during acceleration of a passenger car in terms of car body structure and panel contribution. According to the transfer method, interior noise is classified into structure-borne noise and air-borne noise. Structure-borne noise is generated when the engine's vibration energy, an excitation source, is transferred to the car body through the engine mount and the driving system and the panel of the car body vibrates. When structure-borne noise resonates in the acoustic cavity of the car interior, acute booming noise is generated. This study describes plans for improving the car body structure and the panel form through a cause analysis of frequency ranges where the sound pressure level of the rear seat relative to the front seat is high. To this end, an analysis of the correlation between body attachment stiffness and acoustic sensitivity as well as a panel sensitive component analysis were conducted through a structural sound field coupled analysis. Through this study, via research on improving the car body structure in terms of reducing rear seat noise, stable performance improvement and light weight design before the proto-car stage can be realized. Reduction of the development period and test car stage is also anticipated.

Flow Simulation for Structure Validation of Passenger Car Seat Cooling & Heating Module (승용차 시트 쿨링 & 히팅 모듈의 구조 타당성 검증을 위한 유동 전산모사)

  • Gao, Jia-Chen;Park, Seul-Hyun;Ma, Sang-Dong;Kim, Jae-Yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.2
    • /
    • pp.108-113
    • /
    • 2019
  • Due to the special structure of the car seat, the heating and cooling module must be installed in a limited area resulting in difficulty in regards to achieving optimal cooling and heating efficiency. In order to solve these problems, this paper establishes a new structure for heating and cooling modules, verifies the structural feasibility of the thermoelectric module for cooling and heating the seat through fluid simulations, and verifies the proper design of the mechanical components of the thermoelectric module.

Convergence Study on the Thermal Stress According to the Structure of Automotive Heating Seat (자동차 난방 시트의 구조에 따른 열응력 해석에 대한 융합 연구)

  • Choi, Gye-Gwang;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.7
    • /
    • pp.169-174
    • /
    • 2019
  • Because the warm and cozy demand of automotive driving seat increases, the research development of heating seat has been actively made. In this study, the thermal stress analysis and the structural analysis were carried out with three kinds of heating seats of A, B and C. By executing the thermal analysis with the same material, model A was shown to have the heat transfer better than model B or model C at the study result. So, it could be seen that the heat transfers became different each other though models had the same material according to the configuration of product. Adding the hot wire in order to expect the safer heating can be better heating, but there is the limit on the aspect considering the capability in contrast to the price of product. Generally, model B is thought to be safest thermally than model A or model C in every respect. As the design data of the automotive heating seat product with the durability and safety acquired by this study result are used, the artistic environment can be promoted by being grafted onto the automotive driving seat.

A Study on the Structural Design of a Seat frame in Automotive Vehicles (승용차 시트프레임의 구조설계에 관한 연구)

  • 김홍건;조영태;최금호;이병휘
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.159-163
    • /
    • 1999
  • A seat frame structure in automotive vehicles made of polymer matrix composite to achieve weight reduction at low cost was developed. In order to design and manufacture the actual product, studies on material selection, and structural analyses were performed. Structural analyses were performed with a finite element analysis. Analyses were done for several cases suggested in various safety regulations of FMVSS(Federal Motor Vehicle Safety Standards). Each result was utilized to modify the actual shape to obtain a lighter, safer and more stable design. The final design was used to produce a sample bottom plate of the seat structure. Substitution of the material resulted in a weight reduction effect with equivalent strength, fatigue and impact characteristics. Furthermore, several effects from the replacement of the material besides weight reduction were also examined.

  • PDF

Structure Analysis on Automotive Seat Recliner Housing with High Tension Steel Plate (고장력 강판으로 된 자동차 시트 리크라이너 하우징에 대한 구조 해석)

  • Cho, Ho-Sun;Kim, Key-Sun;Choi, Doo-Seuk;Kim, Young-Chun;Park, Sang-Heup;Oh, Bum-Suk;Cho, Jae-Ung;Kook, Jeong-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.8
    • /
    • pp.3644-3649
    • /
    • 2013
  • Automotive seat recliner has the function to control the angle at the back of chair and has the relation close to the safety of seat. Therefore each of parts constituting the recliner is important and the recliner housing to protect these parts from various dynamic loads is also important. In this study, the recliner housing with t=3mm which is made of high tension steel plate(SPFC 980) is applied to actual automotive seat. The deformation is investigated through the durability tester. Deformation and equivalent stress are also analyzed by simulation analysis under the same condition with experiment. After recliners with thicknesses of 1mm and 2mm are modeled by bases of experimental and analysis values, deformation and equivalent stress are investigated through structural analysis.

Development of Plastic Suspension System for Automotive Seat (자동차 시트용 플라스틱 서스펜션 시스템 개발)

  • Cho, Jae-Ung;Kim, Key-Sun;Choi, Doo-Seuk;Kim, Sei-Hwan;Bang, Seung-Ok;Cho, Chan-Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.3
    • /
    • pp.1091-1097
    • /
    • 2011
  • This study aims to develop the plastic suspension assembly which is installed on inside of vehicle seat and supports passenger's back to provide the comfortable feeling. This design is the suspension structure to support the back equally and assemble seat back frame and plastic suspension effectively. The parts of suspension are designed by considering the property of body pressure distribution. As analysis values are approached to measured values by comparing the deformations in the cases of existed spring suspension and developed plastic suspension, the optimum design can be established.

Evaluation of Static/Dynamic Structural Strength for Automotive Round Recliner (자동차용 라운드 리클라이너 정적/동적 구조 강도 평가)

  • Lee Dongjae;Park Changsoo;Lee Kyoungteak;Kim Sangbum;Kim Heonyoung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.140-146
    • /
    • 2005
  • This study presents the development of a round recliner using the finite element method. That reduces the number of test repeating times and gives an information about stiffness. A simulation model of round recliner mounting seat module and tooth strength simulation are established using a PAM-CRASH and ABAQUS. With the optimization of gear profile, structural strength design of round recliner was achieved. The round recliner seat module simulation, structure strength simulation and a crash safety are requested by FMVSS test. Solution of round recliner optimum variable study and design problem are searched for round recliner stress, deformation and application. Also an examination of safety is made.

Convergence Study on Durability Analysis of Scooter Seat (스쿠터 시트의 내구성 해석에 관한 융합 연구)

  • Oh, Bum-Suk;Cho, Jae-Ung
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.6
    • /
    • pp.165-170
    • /
    • 2019
  • This study carried out the structural analysis and vibration analysis on scooter seat. By comparing with three kinds of B-bone A, Julio B, and City Ace C, the load was applied to scooter seat as much as a weight of person. Through structural analysis, this study examined which seat is most deformed by comparing the deformation each other or affords passengers most convenience and does not afford passengers the inconvenience by absorbing the vibration during driving. Model C has the most total deformation at the structural analysis result and Model B is seen to be changed to be convenient to sit the deformation as it deforms largely. Through this study, which seat is most convenient and becomes strong on durability can be confirmed. As the durability analysis result data of scooter seat model obtained on the basis of this study result are utilized, the esthetic sense can be shown by being grafted onto the machine or structure at real life.