• Title/Summary/Keyword: Automotive Requirements

Search Result 273, Processing Time 0.023 seconds

Process Development for Automotive Hybrid Hood using Magnesium Alloy AZ31B Sheet (마그네슘 합금 AZ31B 판재를 이용한 자동차 하이브리드 후드 개발 프로세스)

  • Jang, D.H.
    • Transactions of Materials Processing
    • /
    • v.20 no.2
    • /
    • pp.160-166
    • /
    • 2011
  • Weight reduction while maintaining functional requirements is one of the major goals in the automotive industry. The use of lightweight magnesium alloys offers great potential for reducing weight because of the low density of these alloys. However, the formability and the surface quality of the final magnesium alloy product for auto-body structures are not acceptable without a careful optimization of the design parameters. In order to overcome some of the main formability limitations in the stamping of magnesium alloys, a new approach, the so-called "hybrid technology", has been recently proposed for body-in-white structural components. Within this approach, necessary level of mechanical joining can be obtained through the use of lightweight material-steel adhesion promoters. This paper presents the development process of an automotive hybrid hood assembly using magnesium alloy sheets. In the first set of material pairs, the selected materials are magnesium alloy AZ31B alloy and steel(SGCEN) as inner and outer panels, respectively. In order to optimize the design of the inner panel, the stamping process was analyzed with the finite element method (FEM). Laser welding by CW Nd:YAG were used to join the magnesium alloy sheets. Based on the simulation results and mechanical test results of the joints, the determination of die design variables and their influence on formability were discussed. Furthermore, a prototype based on the proposed design was manufactured and the static stiffness test was carried out. The results demonstrate the feasibility of the proposed hybrid hood with a weight reduction of 25.7%.

Development of a Body Network System with GSEK/VDX Standards and CAN Protocol (OSEK/VDX 표준과 CAN 프로토콜을 사용한 차체 네트웍 시스템 개발)

  • 신민석;이우택;선우명호;한석영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.175-180
    • /
    • 2002
  • In order to satisfy the requirements of time reduction and cost saving for development of electronic control systems(ECU) in automotive industry, the applications of a standardized real-time operating system(RTOS) and a communication protocol to ECUs are increased. In this study, a body control module(BCM) that employs OSEK/VDX(open system and corresponding interfaces for automotive electronics/vehicle distributed executive) OS tour the RTOS and a controller area network(CAN) fur the communication protocol is designed, and the performances of the system are evaluated. The BCM controls doors, mirrors, and windows of the vehicle through the in-vehicle network. To identify all the transmitted and received control messages, a PC connected with the CAN communication protocol behaves as a CAN bus emulator. The control system based upon in-vehicle network improves the system stability and reduces the number of wiring harness. Furthermore it is easy to maintain and simple to add new features because the system is designed based on the standards of RTOS and communication protocol.

A Study on Model-based Mode Management Development Process for AUTOSAR Compliant ECU (AUTOSAR 기반 ECU의 모델 기반 모드관리 개발 기법에 관한 연구)

  • Kwon, Jaehee;Sunwoo, Myungho;Lee, Wootaik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.1
    • /
    • pp.116-126
    • /
    • 2017
  • We suggest a process for the basic software configurations and application development in the mode management design of AUTOSAR-based ECU. Mode management is an essential task and AUTOSAR provides the mode management components for the runtime state handling of an ECU, such as BswM, application mode manager and RTE. BswM is used to meet the custom's requirements for ECU state handling. The behavior of BswM is configured with a set of rules in the form of "if-else" statements, so it is a complicated job and a potential source of errors as the number of rules increases. These difficulties can be overcome using the Model-Based Development approach, which is widely used in the AUTOSAR SW development. An efficient process is proposed to apply the MBD approach to the BswM configuration. An application mode development process is also proposed to improve the mode management design by combining the MBD process. Development tools are developed to adapt these proposed processes to the traditional ones. Simulation and experimental results are provided to prove the feasibility of the proposed approach.

Advances on heat pump applications for electric vehicles

  • Bayram, Halil;Sevilgen, Gokhan;Kilic, Muhsin
    • Advances in Automotive Engineering
    • /
    • v.1 no.1
    • /
    • pp.79-104
    • /
    • 2018
  • A detailed literature review is presented for the applications of the heat pump technologies on the electric vehicles Heating, Ventilation and Air Conditioning (HVAC) system. Due to legal regulations, automotive manufacturers have to produce more efficient and low carbon emission vehicles. Electric vehicles can be provided these requirements but the battery technologies and energy managements systems are still developing considering battery life and vehicle range. On the other hand, energy consumption for HVAC units has an important role on the energy management of these vehicles. Moreover, the energy requirement of HVAC processes for different environmental conditions are significantly affect the total energy consumption of these vehicles. For the heating process, the coolant of internal combustion (IC) engine can be utilized but in electric vehicles, we have not got any adequate waste heat source for this process. The heat pump technology is one of the alternative choices for the industry due to having high coefficient of performance (COP), but these systems have some disadvantages which can be improved with the other technologies. In this study, a literature review is performed considering alternative refrigerants, performance characteristics of different heat pump systems for electric vehicles and thermal management systems of electric vehicles.

A Non-volatile Memory Lifetime Extension Scheme Based on the AUTOSAR Platform using Complex Device Driver (AUTOSAR 플랫폼 기반 CDD를 활용한 비휘발성 메모리 수명 연장 기법)

  • Shin, Ju-Seok;Son, Jeong-Ho;Lee, Eun-Ryung;Oh, Se-Jin;Ahn, Kwang-Seon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.8 no.5
    • /
    • pp.235-242
    • /
    • 2013
  • Recently, the number of automotive electrical and electronic system has been increased because the requirements for the convenience and safety of the drivers and passengers are raised. In most cases, the data for controlling the various sensors and automotive electrical and electronic system used in runtime should be stored on the internal or external non-volatile memory of the ECU(Electronic Control Units). However, the non-volatile memory has a constraint with write limitation due to the hardware characteristics. The limitation causes fatal accidents or unexpected results if the non-volatile memory is not managed. In this paper, we propose a management scheme for using non-volatile memory to prolong the writing times based on AUTOSAR(AUTOmotive Open System Architecture) platform. Our proposal is implemented on the CDD(Complex Device Driver) and uses an algorithm which swaps a frequently modified block for a least modified block. Through the development of the prototype, the proposed scheme extends the lifetime of non-volatile memory about 1.08 to 2.48 times than simply using the AUTOSAR standard.

Performance Design of Aluminum EGR Cooler Consisting of Extruded Tubes for LPL EGR System (LPL EGR 시스템용 압출 튜브 구조의 알루미늄 EGR 쿨러 성능 설계)

  • Heo, Hyungseok;Bae, Sukjung;Kang, Taegu;Lee, Junyong;Seo, Hyeongjun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.1
    • /
    • pp.42-50
    • /
    • 2017
  • A study has been conducted to develop an aluminum EGR cooler for the LPL EGR system of a diesel engine. Aluminum has a much lower density and thermal conductivity that is about 12 times or more than that of stainless steel, so it is advantageous for use in an EGR cooler for weight reduction and cooling performance effects. A design process has been carried out to ensure heat dissipation performance in a restricted space to investigate the geometric parameters and satisfy the requirements for pressure drops at both fluid sides. The tubes of exhaust gas have been designed as extruded tubes. An aluminum EGR cooler consisting of extruded tubes entails a simpler manufacturing process compared to a stainless steel EGR cooler with conventional heat transfer fins. A prototype has been manufactured from the final model selected through the design process. The performance of the aluminum EGR cooler was evaluated and compared with that of the conventional one. The weight of the aluminum EGR cooler is reduced by 22.9%, while performance is significantly improved.

Analysis of the Reliability Requirements in ISO 9000, QS-9000, ISO/TS 16949 system (신뢰성과 관련된 요구사항에 대하여 ISO 9000, QS-9000, ISO/TS 16949 시스템의 비교분석)

  • 박채원;김광섭
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2004.07a
    • /
    • pp.249-261
    • /
    • 2004
  • Many of companies all over the world have been certified ISO 9000 which is customer focused since last ten 10 years, and industrial sector specific certifications have been developed, such as QS-9000 and ISO/TS 16949 which are specific requirements added to ISO 9000 for the automotive industrial sector. Requirements addressed in ISO 9000, QS-9000 and ISO/TS 16949 are considered to be significant. And I think that requirements for reliability elements such as Design FMEA, Process FMEA and Gage R&R are very important. I sincerely hope that my study for requirements for reliability elements to be helpful to individual, companies and related association. There should be a lot of requirements in related with reliability in other industrial sectors and I am planning to study on it continuously.

  • PDF

Output Characteristics Using Indirect Measurement of Air Flow in a Motorcycle Engine (흡입공기량 간접계측방식의 전자제어화 Motorcycle 엔진 출력 특성)

  • Jung Taegyun;Chae Jaeou
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.3
    • /
    • pp.87-95
    • /
    • 2005
  • Most of the motorcycle engines have used carburetors in the fuel system, because of its simple structure and reliability but the fuel economy and the emissions of those engines are bad when we compared with automobile engines .To meet with the tighten emission regulations and the higher requirements for fuel economy, the application of the carburetor on the motorcycle engines would be limited. Therefore, it is important to develope a ECU control system for motorcycle engines. Since the fuel injection system is expensive, it is necessary to decrease the cost of ECU system for motorcycle engines, but the accuracy of the ECU control system should be increased as high as possible. In this paper, we studied about the AFS characteristics of motorcycle engine controled by indirect method.

Effect of Fuel Injection Timing on the Performance Characteristics in an Si Engine (가솔린기관의 연료분사 시기가 기관성능에 미치는 영향)

  • 조규상;정연종;김원배
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.6
    • /
    • pp.144-152
    • /
    • 1996
  • In the sequential MPI system with one injection for each cycle, engine performance is influenced by the mixture conditions. It can be said that engine performance is improved by being better identical mixture formation conditions for all cylinders. As the fuel injection timing to the intake port effects on the mixture formation conditions and the engine performance, injection timing must be better adjusted to engine requirements. Engine behavior was clearly different depending on the injection time during intake storke. Therefore it was studied that injection timing of fuel effects on the engine performance I. e. combustion stability, COV(imep), A/F excursion, CO,HC emission concentration and fuel consumption. It was found that late intake-synchronous injection was deteriorated the combustion characteristics and performance characteristics, while early intake-synchronous infection resulted in favorable engine behavior.

  • PDF

Implicit Numerical Algorithm for Real-time simulation of a Vehicle (차량 실시간 시뮬레이션을 위한 암시적 수치 알고리즘)

  • 박민영;이정근;송창섭;배대성
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.3
    • /
    • pp.143-153
    • /
    • 1998
  • In this reaserch, a program for real time simulation of a vehicle is developed. This program uses relative coordinates to save the computation time and BDF(Backward Difference Formula) to integrate system variables. Numerical tests were performed for J-turn and Lane change steering, respectively. The validity of the program is proved by the ADAMS package. Numerical results showed that the proposed implicit method is more stable in carrying out the numerical integration for vehicle dynamics than the explicit method. Hardware requirements for real time simulation are suggested.

  • PDF