• Title/Summary/Keyword: Automotive Diesel

Search Result 929, Processing Time 0.021 seconds

Development of the Calibration Method for the Boost Pressure and EGR Rate of a WGT Diesel Engine Using Mean Value Model (평균값 모델을 활용한 WGT 디젤엔진의 과급압력 및 EGR율 보정 방법 개발)

  • Chung, Jaewoo;Kim, Namho;Lim, Changhyun;Kim, Deokjin;Kim, Kiyong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.3
    • /
    • pp.319-329
    • /
    • 2016
  • Globally, many researchers have been trying to improve the fuel economy of a vehicle for satisfying future $CO_2$ regulation and minimizing air pollution problem. For the same background, diesel engine and vehicle system optimization using simulation models have been key technologies for the improvement of vehicle system efficiency. Therefore, in this study, calibration method for the air breathing system of a WGT diesel engine using mean value model has been composed for efficient engine and vehicle optimization simulation researches. And virtual WGT performances have been calculated for a 2 cylinder downsized diesel engine system. From these researches, the calibration method for the boost pressure and EGR rate of a virtual diesel engine related with WGT performances could be composed and some of technical issue related with downsized diesel engine could be investigated.

The Effect of Biodiesel and Ultra Low Sulfur Diesel Fuels on Emissions in 11,000 cc Heavy-Duty Diesel Engine

  • Baik, Doo-Sung;Han, Young-Chool
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.870-876
    • /
    • 2005
  • It seems very difficult to comply with upcoming stringent emission standards in vehicles. To develop low emission engines, better quality of automotive fuels must be achieved. Since sulfur contents in diesel fuels are transformed to sulfate-laden particulate matters as a catalyst is applied, it is necessary to provide low sulfur fuels before any Pt-based oxidation catalysts are applied. In general, flash point, distillation $90\%$ and cetane index are improved but viscosity can be worse in the process of desulfurization of diesel fuel. Excessive reduction of sulfur may cause to degrade viscosity of fuels and engine performance in fuel injection systems. This research focused on the performance of an 11,000 cc diesel engine and emission characteristics by the introduction of ULSD, bio-diesel and a diesel oxidation catalyst, where the bio-diesel was used to improve viscosity of fuels in fuel injection systems as fuel additives or alternative fuels.

A Study on the Application Characteristics of Ultrasonically Irradiated Bio-Diesel Fuel in Common-mil Direct Injection Diesel Engine (커먼레일 디젤기관에 초음파 조사 바이오디젤유 적용 특성에 관한 연구)

  • Choi Dooseuk;Jung Youngchul;Im Seukyeon;Ryu Jeongin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.109-114
    • /
    • 2006
  • The reformed bio-diesel fuel irradiated by the ultrasonic wave is applied to the diesel engine of common rail in common use recently. This study has the object to examine the properties of engine performance and discharged materials. The bio-diesel fuel is mixed and used with the diesel fuel in common use at the ratio of $20\%\;or\; 100\%$. The ultrasonic energy is irradiated to the individually mixed fuel in order to reform the fuel. This fuel is applied to the engine in this experiment. And It is compared and analyzed from the experimental results with two cases irradiating the ultrasonic wave and no irradiating.

The Engine Performance and Emission Characteristics of CNG/Diesel Dual-fuel Engine by CNG Mixing Ratio (CNG/Diesel Dual-fuel 엔진의 CNG 혼합율에 따른 엔진성능 및 배출가스 특성에 관한 연구)

  • Choi, Gun-Ho;Lim, Ock-Taeck
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.3
    • /
    • pp.38-43
    • /
    • 2011
  • A CNG/diesel dual-fuel engine uses CNG as the main fuel and injects a small amount of diesel as an ignition priming. This study proposed the modification of the existing diesel engine into a dual-fuel engine that injects diesel with a high pressure by common rail direct injection (CRDI) and by injecting CNG at the intake port for premixing. And experiment was progressed for understanding about effect of CNG mixing ratio. The CNG/diesel dual-fuel engine showed equally satisfactory coordinate torque and power regardless of CNG mixing ratio. The PM emission was low at any CNG mixing ratio because of very small diesel pilot injection. In case of NOx and HC, high CNG mixing ratio showed low NOx and HC emissions at low speed. At medium & high speed, low CNG mixing ratio showed low NOx and HC emissions. Therefore, it would be optimized by controlling CNG mixing ratio.

An Experimental Study on Filtration Efficiency and BPT Characteristics by PM Loading in Partial-diesel Particulate Filter (포집량에 따른 p-DPF의 정화효율 및 BPT 특성에 관한 실험적 연구)

  • Oh, Kwang-Chul;Lee, Kyung-Bok;Lee, Chun-Beom
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.1
    • /
    • pp.147-154
    • /
    • 2012
  • The number of vehicles applied diesel engine are rapidly rising for fuel economy. Accompanying this trend, application of an after-treatment system is strictly required as a result of reinforced emission regulation. The Diesel Particulate Filter (DPF) system is considered as the most efficiency method to reduce particulate matter (PM) by car makers but also in retrofit market. In recently, various kinds of partial flow DPF are widely used for proper filtration performance and reducing of pressure drop but it is difficult to define the characteristics of these filters because the filtration mechanism is obscure according to the status of these systems. In this paper we investigated the characteristics of cell open type DPF according to the status of filter especially, PM loading. The PM loading mass in the p-DPF are predicted from increase of differential pressure of DPF and the trend of filtration efficiency so that we can measure filtration efficiency and Balance Point Temperature (BPT) of this p-DPF according to PM loading.

EMISSION CHARACTERISTICS IN ULTRA LOW SULFUR DIESEL

  • Oh, S.-K.;Baik, D.-S.;Han, Y.C.
    • International Journal of Automotive Technology
    • /
    • v.4 no.2
    • /
    • pp.95-100
    • /
    • 2003
  • Automobile industry has been developed rapidly as a key manufacturing industry in Korea. Meanwhile, air pollution is getting worse noticeably than ever. In the diesel emission, PM (Particulate Matter) and NOx (Nitrogen Oxides) have been exhausted with a great amount and the corresponding emission regulations are getting stringent. In order to develop low emission engines, it is necessary to research on better qualified fuels. Sulfur contained in fuel is transformed to sulfur compound by DOC (Diesel Oxidation Catalyst) and then it causes to the increase of sulfate-laden PM on the surface of catalyst. In this research, ULSD (Ultra Low Sulfur Diesel) is used as a fuel and some experimental results are investigated. ULSD can reduce not only PM but also gas materials because cetane value, flash point, distillation 90%, pour point and viscosity are improved in the process of desulfurization. However, excessively reduced sulfur may cause to decease lubricity of fuel and engine performance in fuel injection system. Therefore, it requires only modest adjusted amount of sulfur can improve engine performance and DOC, as well as decrease of emission.

A Study on Heavy-Duty Diesel Engine Performance with a CR-DPF and Cooled-EGR (CR-DPF와 Cooled-EGR 적용한 대형디젤기관 성능에 관한 연구)

  • Moon, Byung-Chul;Oh, Yong-Suk;Oh, Sang-Ki;Kang, Kum-Won;Ahn, Kyun-Jae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.75-80
    • /
    • 2006
  • Since air pollution has become a globally critical issue and exhaust emissions from automobiles cause a major source of air pollution, many countries including advanced countries have stipulated stringent emission regulations. Particularly in diesel vehicles, NOx and particulate matters exhaust in significant amounts even though diesel vehicles provide merits in aspects of higher thermal efficiency and lower $CO_2$. To reduce Particulate matters and NOx, after-treatment technology such as filter trap, oxidation catalysts and EGR has been applied. This test was conducted on the effect of continuous regeneration diesel particulate filter and cooled-EGR, and 15ppm low sulfur diesel was used as a test fuel. Exhaust emissions, PM, NOx, CO, HC and Soots were measured and compared under D-13 and D-3 modes.

Experimental study on the performance of a turbocompound diesel engine with variable geometry turbocharger

  • Yin, Yong;Liu, Zhengbai;Zhuge, Weilin;Zhao, Rongchao;Zhao, Yanting;Chen, Zhen;Mi, Jiao
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.4
    • /
    • pp.332-337
    • /
    • 2016
  • Turbocompounding is a key technology to satisfy the future requirements of diesel engine's fuel economy and emission reduction. A turbocompound diesel engine was developed based on a conventional 11-Liter heavy-duty diesel engine. The turbocompound system includes a power turbine, which is installed downstream of a Variable Geometry Turbocharger (VGT) turbine. The impacts of the VGT rack position on the turbocompound engine performance were studied. An optimal VGT control strategy was determined. Experimental results show that the turbocompound engine using the optimal VGT control strategy achieves better performance than the original engine under all full load operation conditions. The averaged and maximum reductions of the brake specific fuel consumption (BSFC) are 3% and 8% respectively.

A Study of Unregulated Emission Reduction Characteristics by Diesel Oxidation Catalyst (DOC) for Light-Duty Diesel Engine (소형디젤엔진용 산화촉매에 의한 미 규제 배출가스 저감특성에 관한 연구)

  • Kim, Ki-Ho;Ahn, Gyun-Jae;Kang, Keum-Won;Lee, Seang-Wock;Eom, Dong-Seop;Lee, Tae-Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.145-150
    • /
    • 2006
  • Recently emission regulation on diesel vehicles is getting stringent and research on aftertreatment technology such as DPF and DOC has been carried out actively. Even though PM(Particulate matters) reduction efficiency in DOC is relatively low but the structure is simpler and very effective in the reduction of gas materials and unregulated materials. Therefore it has been applied to smaller diesel vehicles. The aims of this research is to investigate the emission reduction characteristics of DOC; DOC performance of regulated and unregulated material emission reduction. It results a Pt based catalyst demonstrated higher emission reduction efficiency than a Pt-V based catalyst in CVS-75 mode, and also the reduction efficiency of unidentified material was excellent.