• Title/Summary/Keyword: Automotive Development

Search Result 2,087, Processing Time 0.025 seconds

Development of Vibration Index for the Objective Evaluations of Idle Vibration Quality in a Passenger Car (차량 아이들 감성진동 평가를 위한 진동평가지수의 연구)

  • Park, Hong-Seok;Lee, Sang-Kwon;Yoon, Gi Soo;Lee, Min Sup
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.683-688
    • /
    • 2012
  • Driver's feeling is variously affected by lots of components such as engine, frame, wheels, and seats during the operation of automobiles. The main objective of this research is to identify the correlation between subjective evaluation and vibration metrics that was set by ISO to investigate development of the car vibration quality index using multiple linear regressions (MLR). A previous research related with automotive vibration quality used the method of calculating acceleration values of the point of a seat, a seat back, foot as RMS for objective evaluation. The automotive comfort is determined by RMS values. In comparison with the previous research, this study includes not only the vibration metrics, but also subjective values by jury evaluation. By indentifying the correlation between subjective evaluation and vibration metrics, the automotive vibration quality index is developed through MLR. Based on the results of this study, the proposed the automotive vibration quality index which developed through MLR will be helpful to obtain objective and reliable automotive comfort values.

  • PDF

Improved Mechanical and Durability Properties of PVC Sheet by Designing Three-Layered Structures

  • Park, Jun-Young;Kim, Woo-Sang;Kang, Hae-Cheon;Bae, Seokhu;Yoon, Jeong-Hwan;Yun, Juho;Lee, Eun-Kyoung;Kim, Namil
    • Elastomers and Composites
    • /
    • v.54 no.4
    • /
    • pp.294-298
    • /
    • 2019
  • A three-layered PVC sheet consisting of polyvinyl chloride (PVC) and woven polyester fabric was prepared by extrusion and calendering. The flexibility and durability of the PVC were tuned by adding plasticizers, additives, and surface coatings. The tensile and tear strengths of the three-layered PVC sheet were higher than those of commercial two-layered sheet, while exhibiting low weight. The concentrations of the total volatile organic compounds (TVOCs) and formaldehyde (HCHO) emitted from the sheet were also lowered. The PVC sheet remained stable after prolonged exposure to UV light, signifying that the PVC sheet is suitable for cargo screen applications.

ACTIVATED CARBON CANISTER PERFORMANCE FOR A SPARK IGNITION ENGINE

  • CHOI G. H.;CHOI K. S.;CHUNG Y. J.;KIM I. M.;DIBBLE R. W.;HAN S. B.
    • International Journal of Automotive Technology
    • /
    • v.7 no.1
    • /
    • pp.9-15
    • /
    • 2006
  • Prediction of the performance of a carbon canister in vehicle evaporative emission control system has become an important aspect of overall fuel system development and design. A vehicle's evaporative emission control system is continuously working, even when the vehicle is not running, due to generation of vapors from the fuel tank during ambient temperature variations. Evaporative emissions from gasoline powered vehicles continue to be a major concern. The objective of this paper is to clarity the flow characteristics and other such fundamental data for the canister during loading and purging are needed, and this data will prove valuable in the development of the canister. This paper is to evaluate the relationship between carbon canister condition and engine performance during engine operation, and the effects of evaporative emissions on the engine performance were investigated.

Development of Network-based Traction Control System and Study its on Performance Evaluation using Net-HILS (Net-HILS를 이용한 네트워크기반 구동력제어시스템 개발 및 성능평가에 관한 연구)

  • Ryu, Jung-Hwan;Yoon, Ma-Ru;Hwang, In-Yong;SunWoo, Myoung-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.47-57
    • /
    • 2006
  • This paper presents a network-based traction control system(TCS), where several electric control units (ECUs) are connected by a controller area network(CAN) communication system. The control system consists of four ECUs: the electricthrottle controller, the transmission controller, the engine controller and the traction controller. In order to validate the traction control algorithm of the network-based TCS and evaluate its performance, a Hardware-In-the-Loop Simulation(HILS) environment was developed. Herein we propose a new concept of the HILS environment called the network-based HILS(Net-HILS) for the development and validation of network-based control systems which include smart sensors or actuators. In this study, we report that we have designed a network-based TCS, validated its algorithm and evaluated its performance using Net-HILS.

Life Prediction of Automotive Vehicle's W/H System Using Finite Element Analysis (차량용 와이어하네스의 유한요소해석을 이용한 대변형 내구수명 예측)

  • Kim, Byeong-Sam;Kang, Ki-Jun;Park, Kyoung-Woo;Noh, Kwang-Doo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.139-144
    • /
    • 2010
  • In the automotive electronic industry, the development of vehicle's door wiring harness (W/H) system for new applications is driven continuously for the low-cost and the high strength performance for electronic components. The problem of the fatigue strength estimation for materials and components containing natural defects, inclusions, or inhomogeneities is of great importance both scientifically and industrially. This article gives some insight into the dimensioning process with special focus on the fatigue analysis of wiring harness (W/H) in vehicle's door structures. The results from endurance tests using slim test specimens were compared with the results from FEM for predicted fatigue life. The expectation for the life of components is affected by the microstructural features with complex stress state arising from the combined service loading and residual stresses.

Development of Vehicle Environment for Field Operational Test Data Base of Driver-vehicle's Behaviour (운전자 거동에 대한 필드 데이터베이스 구축을 위한 차량 환경 개발)

  • Kim, Jinyong;Jeong, Changhyun;Jeong, Minji;Jung, Dohyun;Woo, Jinmyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • Recently, the automotive technology has developed with electronics and information technology as convergence technology while vehicles had been regarded as machines. Moreover, vehicles are becoming more intelligent and safer devices, assembly of advanced technologies by customers' demand. Even though all of installations of vehicle have attracted as diverting devices, it cause drivers' mistakes like delay of response on traffic condition. Here, we proposed the Field Operational Test (FOT) environment which could be used as driving and road conditions collector(Vehicle motion, Traffic condition, Driver input, Driver state, etc.) for researches about Driver Friendly Intelligent System(SCC, LDWS, etc.), Human Vehicle Interface(Driving Workload, etc.) and Economic Drive Model. Furthermore driving patten and fuel consumption patten of drivers were analyzed by measured data and direction of future research was suggested.

A Study on the Impact of Fuel Economy as Tactive Resistance Calculation Methods on HD Chassis Dynamometer for Medium-heavy Duty Vehicle (주행저항 산출방법이 차대동력계를 이용한 중대형 차량의 연비평가 결과에 미치는 영향에 관한 연구)

  • Lee, Iksung;Seo, Dongchoon;Kim, Soohyung;Ko, Sangchul;Chun, Youngwoon;Cho, Sanghyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.3
    • /
    • pp.307-314
    • /
    • 2015
  • The purpose of this study is know the fuel economy of difference tractive resistance calculation methods on light duty low-floor bus. Two tractive resistance calculation methods(coastdown test and JFCM conversion formula) are tested to understand the difference of fuel economy. JFCM was developed for fuel economy regulations of heavy duty vehicle. That show a big difference as a result of the calculation using coastdown test and JFCM conversion formula. The difference of the tractive resistance affects the fuel economy.

Design and Implementation of OSEK/VDX Development Tool for Automotive Applications (OSEK/VDX 기반의 차량 전장용 응용개발도구 설계 및 구현)

  • Ahn, SungHo;Kim, JaeYoung;Kim, GwangSu
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.4 no.2
    • /
    • pp.84-89
    • /
    • 2009
  • This paper describes the development tool for applications of automotive electronic control unit based on OSEK/VDX. This development tool has a plug-in structure and is written in Java language, because of being based on Eclipse CDT. And also this development tool has another functionality of expansion, which means a special function block can be easily adopted in this development tool. Currently, this development tool consists of five blocks, which are integrated development environment block, fusing program block, system generation block, debugger block, and cross-compiler toolchain block. They have relationship between each other and work for developing OSEK/VDX-based applications. In this paper, we show the functionality of each block of this development tool and its implementation.

  • PDF

The Competitiveness Analysis of Geely Automobile Group

  • Yuhang Xia;Mingsheng Li;Junzhu Zhang;Myeongcheol Choi;Hannearl Kim
    • International Journal of Advanced Culture Technology
    • /
    • v.12 no.2
    • /
    • pp.402-408
    • /
    • 2024
  • The purpose of this research is to discuss the development history and future strategy of Geely Automobile Group Co., Ltd. Founded in 1997, Geely Automotive Group has grown from a small workshop to one of China's leading automakers after nearly three decades of development.This paper first reviews the development of Geely Automobile, from the initial small-scale production to the current global layout and diversified product line. Secondly, it analyzes the challenges and opportunities faced by Geely Automobile, including the intensification of market competition and the changing demand for technological innovation.And put forward the future development strategy of Geely Automobile, including improving the quality of products, expanding the international market and promoting the development of new energy vehicles. By analyzing the development history and future strategy of Geely Automobile Group Co., Ltd., we can better understand the company's position and future development direction in China's automobile industry.

Hydro-forming Process Development of Automotive AA6061 Rear Sub-frame Side Member by Computer Aided Engineering (CAE) (컴퓨터 시뮬레이션(CAE)을 이용한 자동차용 AA6061 리어 서브-프레임 사이드멤버의 하이드로-포밍 공정 개발)

  • Kim, Kee-Joo;Kim, Jae-Hyun;Choi, Byung-Ik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.45-49
    • /
    • 2010
  • The automotive industry has shown a growing interest in tube hydroforming during the past years. The advantages of hydroforming (less thinning, a more efficient manufacturing process, etc.) can, for instance, be combined with the high strength of extra high strength steels, which are usually less formable, to produce structural automotive components which exhibit lower weight and improved service performance. Design and production of tubular components require knowledge about tube material and forming behavior during hydroforming and how the hydroforming operation itself should be controlled. These issues are studied analytically in the present paper. In this study, the whole process of rear sub-frame parts development by tube hydroforming using AA6061 material is presented. At the part design stage, it requires feasibility study and process design aided by CAE (Computer Aided Engineering) to confirm hydroformability in details. Effects of parameters such as internal pressure, axial feeding and geometry shape in automotive rear sub-frame by hydroforming process were carefully investigated. Overall possibility of hydroformable rear sub-frame parts could be examined by cross sectional analyses. Moreover, it is essential to ensure the formability of tube material on every forming step such as pre-bending and hydroforming. In addition, all the components of prototyping tool are designed and interference with press is examined from the point of geometry and thinning.