• Title/Summary/Keyword: Automotive

Search Result 11,879, Processing Time 0.038 seconds

Analysis of Automotive HMI Characteristics through On-road Driving Research (실차 주행 연구를 통한 차량별 HMI 특성 분석)

  • Oh, Kwangmyung
    • Journal of the HCI Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.49-60
    • /
    • 2019
  • With the appearance of self-driving cars and electric cars, the automobile industry is rapidly changing. In the midst of these changes, HMI studies are becoming more important as to how the driver obtains safety and convenience with controlling the vehicle. This study sought to understand how automobile manufacturers understand the driving situation, and how they define and limit driver interaction. For this, prior studies about HMI were reviewed and 15 participants performed an on-road study to drive vehicles from five manufacturers with using their interfaces. The results of the study confirmed that buttons and switches that are easily controlled by the user while driving were different from manufacturer to manufacturer. And there are some buttons that are more intensively controlled and others that are difficult to control while driving. It was able to derive 'selection and concentration' from Audi's vehicle, 'optimization of the driving ' from BMW's, 'simple and minimize' from Benz's vehicle, 'remove the manual distraction' from the vehicle of Lexus, and 'visual stability' from KIA's vehicle as the distinctive keywords for the HMI. This shows that each manufacturer has a different definition and interpretation of the driver's driving control area. This study has a distinct value in that it has identified the characteristics of vehicle-specific HMI in actual driving conditions, which is not apparent in appearance. It is expected that this research approach can be useful to see differences in interaction through actual driving despite changes in driving environment such as vehicle platooning and self-driving technology.

Modularization of Automotive Product Architecture: Evidence from Passenger Car (자동차 아키텍처의 모듈화: 승용차 사례를 중심으로)

  • Kwak, Kiho
    • Journal of Technology Innovation
    • /
    • v.27 no.2
    • /
    • pp.37-71
    • /
    • 2019
  • How has the passenger car's architecture evolved? In the meantime, the discussions on the car architecture have been mixed, i.e., integral, modular, and the coexistence of two types. Therefore, in this study, we aim to develop two indices can measure the degree of modularization of passenger car and its all modules using global trade data. By applying the indices to the framework of architecture positioning that reflects the hierarchical structure of a product, we examined that the degree of modularization of the passenger car architecture has been enhanced. Meanwhile, the degree of modularization differs across the modules that make up the car. Specifically, we observed the higher degree of modularization in front-end, cockpit and seat modules. Whereas, we found that body module had a relatively low degree of modularization. In particular, we observed that the platform of passenger car has notably modularized due to carmakers' efforts to achieve model diversification and reduction of cost and period in new product development at the same time. Interestingly, we showed that three modules, i.e., engine, chassis (relatively less modularized), and transmission (relatively highly modularized), had a different level of modularization, even if they commonly make up the platform. We contribute to the suggestion for analytical approaches that examine the degree of modularization and its progress longitudinally. In addition, we propose the necessity of decomposition of a system into elements in a study of product architecture, considering the possibly distinctive progress of modularization across the elements.

Numerical Approach to Optimize Piercing Punch and Die Shape in Hub Clutch Product (허브클러치 제품의 피어싱 펀치 및 금형 형상 최적화를 위한 수치접근법)

  • Gu, Bon-Joon;Hong, Seok-Moo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.517-524
    • /
    • 2019
  • The overdrive hub clutch is attached to a 6-speed automatic transmission to reduce fuel consumption by using the additional power of the engine. This paper proposes a means to minimize the load and roll-over ratio on the punch during the piercing process for the overdrive hub clutch product. Die clearance, shear angle, and friction coefficient, which can affect the load and roll-over ratio of the punch during processing, were set as the design variables. Sensitivity analysis was also conducted to determine the influence of each design variable on the punch load and roll-over ratio. As a result, shear angle, friction coefficient and die clearance were found to be sensitive to load and roll-over ratio. The punch load and roll-over ratio were set as the objective function and the equation of each design variable and objective function was derives using the Response Surface Method. Finally, the optimal value of the design variables was derived using the Response Surface Method. Application of this model to finite element analysis resulted in 22.14% improvement in the roll-over ratio of the punch load and material.

A Study on the the Follow-up Analysis and the Characteristics of Exhaust Gas by Standard Mode of Chassis Dynamometer of Gasoline (가솔린 차량의 차대동력계 표준모드 별 추종성 분석 및 배출가스 특성에 관한 연구)

  • Seo, Dong Choon;Park, Sung-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.29-34
    • /
    • 2019
  • In this study, a gasoline test vehicle was evaluated for drive quality in emissions and fuel economy tests. The measurement results were compared with the manufacturer's suggested values to evaluate whether the tolerance ranges (fuel efficiency -5%, greenhouse gas +5%) were exceeded. We carried out tests with test subjects based on the SAE J2951 evaluation method. The test vehicle was a 2L gasoline vehicle. The drive following performance was found to increase under deliberate driving conditions and decreased in smooth driving conditions. As a result of the analysis of the drive following performance, the closer the value is to 1, the more accurate the driving is. (-) indicates harsh conditions, and (+) indicates gentle conditions. The basic data on the driver following between testers was obtained by analysis of the tests. The fuel efficiency correlation with the drive following performance within the target speed range of the fuel consumption mode. In the future, these measurement results can serve as key data for securing an exhaust gas database and fuel efficiency system for each measurement mode.

Effect of Re-ventilated Fan Capacity on Road Tunnel Fire (제트팬 용량이 도로터널 화재에 미치는 영향)

  • Kim, Kang-Hee;Cho, Mok-Lyang;Kim, Tae-Kwon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.204-210
    • /
    • 2019
  • In case of a fire inside a tunnel, unlike ordinary roads, it is very difficult for a driver to obtain visibility, and a large accident is highly likely to occur. In this study, the smoke behavior, visible distance, and CO concentration of a jet fan were analyzed using the NIST fire simulation (FDS). All analyses were set to HRRPUA (Heat Release Rate Per Area) 3.6MW/m and all the analysis times were set to 600s. In all analyses by CFD, the results were confirmed at y=30m and y=110m, and smoke behavior analysis, visible range analysis, and carbon monoxide concentration were confirmed according to the diameter and flow rate. As the size and flow rate of the jet fan increased, the visibility distance was high at y=30m, and the concentration of carbon monoxide was also confirmed to be 0 ppm. Therefore, proper setting of the jet fan diameter and flow rate will be an excellent solution for fires in tunnels, and taking refuge at upstream area of a re-ventilated fan can reduce the number of casualties.

A Study on the Flow Analysis for KP505 Propeller Open Water Test (KP505 프로펠러의 단독성능 시험을 위한 유동해석에 관한 연구)

  • Lee, Han-Seop;Kim, Min-Tae;Kim, Won-Seop;Lee, Jong-Hoon;Park, Sang-Heup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.150-155
    • /
    • 2019
  • Cavitation refers to a phenomenon in which empty spaces occur in a fluid due to changes in pressure and a velocity. When a liquid moves at a high speed, the pressure drops below the vapor pressure, and vapor bubbles are generated in the liquid. This study used CFD to analyze the flow of fluid machinery used in marine and offshore plants. The goals are to ensure the validity of the analysis method for marine propellers in an open water test, to increase the forward ratio, and to use FLUENT to understand the flow pattern due to cavitation. A three-dimensional analysis was performed and compared with experimental data from MOERI. The efficiency was highest at advance ratios of 0.7 - 0.8. Thrust was generated due to the difference between the pressure surface and the suction surface, and it was estimated that bubbles would be generated in the vicinity of the back side surface rather than the face side of the propeller, resulting in more cavitation. The cavitation decreased sharply as the advance ratio increased. The thrust and torque coefficients were comparable to those of the MOERI experimental data except at the advance ratio of 1, which showed a difference of less than 5%. Therefore, it was confirmed that CFD can evaluate an open water propeller test.

Framework for Car Safety Education Virtual Reality Simulation (자동차 안전교육 VR 시뮬레이션 제작을 위한 프레임워크)

  • Xie, Qiao;Ding, Xiu Hui;Jang, Young-Jick;Yun, Tae-Soo
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.9
    • /
    • pp.37-45
    • /
    • 2019
  • In recent years, the emergence of virtual reality (VR Virtual Reality) technology has provided a new model of safety education, enabling users to learn and respond to disasters in a virtual safety education environment. However, the related VR products related to domestic and foreign R & D are relatively simple, there is no practical training on specific accident, and it is not practical enough to play a sufficient role in safety education. In this paper, the problems and disadvantages of VR technology applied in the field of automobile safety education as an example of automobile accident among the types of disasters are examined, and a system framework of automotive safety education based on VR technology is proposed. The vehicle safety education system proposed in this paper will help users to improve driving safety consciousness, to acquire safety knowledge in driving, and to acquire driving safety skill which is very important for automobile safety education. In addition, the design and production methods of safety education based on VR technology are considered to have important reference implications for the application of modern teaching and teaching theory by integrating with VR technology and developing related teaching materials products and finally introducing education.

Characteristics of Catalysts System of NGOC-LNT-SCR for CNG Buses (CNG 버스용 NGOC+LNT+SCR 촉매시스템의 특성)

  • Seo, Choong-Kil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.626-631
    • /
    • 2019
  • The policy-making and technological development for the supply expansion of eco-friendly automobiles has been continuing, but the internal combustion engines still accounts for about 95%. Also, in order to meet the stricter emission regulations of internal combustion engines based on fossil fuels, the proportion of after-treatments for vehicles and (ocean going) vessels is gradually increasing. This study is a basic study for the post-Euro-VI exhaust response of CNG buses, and it is to investigate the basic characteristics according to Pd substitution transition metal effect, catalyst volume effect and space velocity. A catalysts was prepared and tested using a model gas reactor. The NGOC catalyst with 3Pd exhibited the highest catalytic activity with 22% at $300^{\circ}C$, 48% at $350^{\circ}C$ and about 75% at $500^{\circ}C$. 3Co NGOC containing 3wt% of transition metal was excellent in oxidation ability, and it was small in size of 2nm, and the degree of catalyst dispersion was improved and de-NO/CO conversion was high. The volume of the NGOC-LNT-SCR catalyst system was optimal in the combination of 1.5+0.5+0.5 with a total score of 165, considering $de-CH_4/NOx$ performance and catalyst cost. For SV $14,000h^{-1}$, the $CH_4$ reduction performance was the highest at about 20%, while the SV $56,000h^{-1}$ was the lowest at about 5%. If the space velocity is small, the flow velocity decreases and the time remaining in the catalyst volume become long, so that the harmful gas was reduced.

Development of Lightweight Composite Sub-frame in Automotive Chassis Parts Considering Structure & NVH Performance (구조 및 NVH 성능을 고려한 복합재료 서브프레임 개발)

  • Han, Doo-Heun;Ha, Sung
    • Composites Research
    • /
    • v.32 no.1
    • /
    • pp.21-28
    • /
    • 2019
  • Recently, according to environmental regulations, the automobile industry has been conducting various research on the use of composite materials to increase fuel efficiency. However, there has not been much research on lightweight chassis components. Therefore, in this research, the purpose of this study is to apply composite materials to the sub-frame of chassis components to achieve equivalent levels of stiffness, strength, NVH performance and 50% lightweight compared to the steel sub-frame. First, the Natural frequency of steel and composite specimens was compared to the damping characteristics of composite materials. Then, in this study, the Lay-up Sequence was derived to maximize the stiffness and strength of the sub-frame by applying composite materials. And this lay-up Sequence is proposed to avoid heat shrinkage due to curing during manufacturing. This process was designed based on a FEM structural analysis, and a Natural frequency and frequency response function graph was confirmed based on a modal analysis. The prototype type composite sub-frame was manufactured based on the design and the F.E.M analysis was verified through a modal experiment. Furthermore, it was fitted to the actual vehicle to verify the natural frequency and the indoor noise vibration response, including idling and road noise. This result was confirmed to be equivalent to the steel sub-frame. Finally, the composite sub-frame weight was confirmed to be about 50% of the steel sub-frame.

A Study on Flow Characteristic due to the Periodic Velocity Fluctuation of Upstream at Single Tube (단일 원관에서 전방류의 주기적인 속도 변동에 따른 유동 특성에 관한 연구)

  • Ha, Ji-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.613-618
    • /
    • 2019
  • The flow-induced vibration in a heat exchanger may cause the damage to piping. Therefore, it is necessary to establish the flow induced vibration characteristics for the structural stability of a heat exchanger. The purpose of this study was to compare the generation, development, and separation characteristics of a vortex around a circular tube with respect to time when the flow velocity of the inlet was fluctuating constantly and periodically. The time characteristics of lift and drag and the PSD characteristics were also investigated. In the case of a constant inlet flow velocity, the well-known Kalman vorticity distribution was shown. The vortex generation, growth, and separation were also observed alternately at the upper and lower sides of the tube. In the case of periodic inlet flow velocity, the vortex occurred simultaneously in the upper and lower sides of the tube. In the case of constant inlet flow velocity, the magnitude of the lift PSD was 500 times larger than that of drag. The frequency was 31.15 Hz and that of drag was doubled at 62.3 Hz. In case of a periodic inlet flow velocity, the PSD of the drag was approximately 500 times larger than that of lift. The frequency was 15.57 Hz, which was the same as the inlet-flow velocity frequency. In addition, the frequency of lift was 31.15 Hz, which was the same Karman vortex frequency.