DOI QR코드

DOI QR Code

Framework for Car Safety Education Virtual Reality Simulation

자동차 안전교육 VR 시뮬레이션 제작을 위한 프레임워크

  • Xie, Qiao (Department of Visual Contents, DongSeo University) ;
  • Ding, Xiu Hui (Department of Visual Contents, DongSeo University) ;
  • Jang, Young-Jick (Department of Visual Contents, DongSeo University) ;
  • Yun, Tae-Soo (Department of Digital Contents, DongSeo University)
  • 셰차오 (동서대학교 영상콘텐츠학부) ;
  • 딩슈후이 (동서대학교 영상콘텐츠학부) ;
  • 장영직 (동서대학교 영상콘텐츠학부) ;
  • 윤태수 (동서대학교 디지털콘텐츠학부)
  • Received : 2019.07.01
  • Accepted : 2019.09.20
  • Published : 2019.09.28

Abstract

In recent years, the emergence of virtual reality (VR Virtual Reality) technology has provided a new model of safety education, enabling users to learn and respond to disasters in a virtual safety education environment. However, the related VR products related to domestic and foreign R & D are relatively simple, there is no practical training on specific accident, and it is not practical enough to play a sufficient role in safety education. In this paper, the problems and disadvantages of VR technology applied in the field of automobile safety education as an example of automobile accident among the types of disasters are examined, and a system framework of automotive safety education based on VR technology is proposed. The vehicle safety education system proposed in this paper will help users to improve driving safety consciousness, to acquire safety knowledge in driving, and to acquire driving safety skill which is very important for automobile safety education. In addition, the design and production methods of safety education based on VR technology are considered to have important reference implications for the application of modern teaching and teaching theory by integrating with VR technology and developing related teaching materials products and finally introducing education.

최근 몇 년간 가상현실(VR, Virtual Reality) 기술의 등장은 안전교육의 새로운 모델을 제공하여 사용자로 하여금 가상 안전교육 환경에서 재난에 대한 지식습득 및 대응을 가능하게 한다. 그러나 현재 국내외의 연구개발과 관련된 관련 VR 제품은 비교적 간단하고, 특정 사고에 대한 실질적인 교육 방안이 없으며, 안전교육에서 충분히 역할을 할 수 있을 만큼 실용성적이지 않다. 본 논문에서는 재난의 유형 중 자동차 사고를 예시로, 자동차 안전교육 분야에서 적용된 VR 기술의 문제점과 단점을 고찰하고, VR 기술을 기반으로 한 자동차 안전교육의 시스템 프레임워크를 제안하고자 한다. 본 논문에서 제안한 자동차 안전교육 시스템은 이용자가 운전 안전의식을 향상시키고, 운전 시 안전지식을 습득하며, 자동차 안전교육에 매우 중요한 운전 안전기술을 습득하는 데 도움이 될 것이라 사료된다. 또한, VR 기술을 기반으로 한 안전교육의 설계와 제작방식은 VR 기술과 통합하여 관련 교재 제품을 개발하고 최종적으로 교육을 도입한다면 현대 교육 교학 이론의 적용에 중요한 참고적 의미를 갖으리라 사료된다.

Keywords

References

  1. K. C. H. Kim. (2017). Study of Theme Park Attractions using Virtual Reality and Augmented Reality Technologies. Journal of Digital Convergence, 15(9), 443-452. DOI : 10.14400/JDC.2017.15.9.443
  2. J. W. Lee, J. Y. Han, D. K. Na & K. Nah. (2017). Development of Supportive Device Design for Artificial Hand Based on Virtual Simulation. Journal of Digital Convergence, 15(10), 455-465. DOI : 10.14400/JDC.2017.15.10.455
  3. M. Xi & S. P. Smith. (2014). Simulating cooperative fire evacuation training in a virtual environment using gaming technology. Journal of IEEE Virtual Reality (VR), 20(4), 139-140. DOI : 10.1109/VR.2014.6802090
  4. S. Bordeianu & R. Lubas. (2013). Interaction between departments: strategies for improving interdepartmental collaboration through communication, Journal of Workplace Culture in Academic Libraries, 4(2), 219-230. DOI : 10.1016/b978-1-84334-702-6.50014-9
  5. Y. Yang. (2016). Introduction to Virtual Reality Technology Application in Medical Education, Journal of Proceedings of the 2016 6th International Conference on Machinery, Materials, Environment, Biotechnology and Computer, 851-854. DOI : 10.2991/mmebc-16.2016.177
  6. K. Brophy. (2014). Gamification and Mobile Teaching and Learning, Journal of Handbook of Mobile Teaching and Learning, 1-12. DOI : 10.1007/978-3-642-41981-2_8-1
  7. L. M. Nicosia. (2009). Virtual Constructivism, Journal of Information Technology and Constructivism in Higher Education, 130-145. DOI : 10.4018/978-1-60566-654-9.ch009
  8. J. I. Kim. (2018). A Study of Class Design for Liberal arts computer Convergence class using cognitive apprentice theory, Journal of Convergence for Information Technology, 8(1), 153-160. DOI : 10.22156/CS4SMB.2018.8.1.153
  9. J. A. Ghani & S. P. Deshpande. (1994). Task Characteristics and the Experience of Optimal Flow in Human-Computer Interaction, Journal of Psychology, 128(4), 381-391. DOI : 10.1080/00223980.1994.9712742
  10. V. Simionescu. (2017), Using Gamification For Teaching Economics In Technical Higher Education: An Exploratory Research, Journal of Proceedings Article, 5(2), 534-541. DOI : 10.15405/epsbs.2017.05.02.65
  11. C. Bossard, G. Kermarrec, C. Buche & J. Tisseau. (2008). Transfer of learning in virtual environments: a new challenge, Journal of Virtual Reality, 12(3), 151-161. DOI : 10.1007/s10055-008-0093-y
  12. T. Zickler. (2012). Physics-Based Approaches to Visual Scene Analysis, Journal of System Simulation, 1-4. DOI : 10.21236/ada587998
  13. L. zhuolin. (2018). Driver safety manual, Bai du. https://wenku.baidu.com/view/8ba2ba337275a417866 fb84ae45c3b3567ecdde3.html
  14. K. Ehrlenspiel. (2003). On the Importance of the Unconscious and the Cognitive Economy in Design. Journal of The Human Behaviour in Design, 25-41. DOI : 10.1007/978-3-662-07811-2_4
  15. R. Stiefelhagen, C. Fogen, P. Gieselmann, H. Holzapfel, K. Nickel & A. Waibel. (2004). Natural human-robot interaction using speech, head pose and gestures, Journal of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2422-2427. DOI : 10.1109/iros.2004.1389771
  16. H. J. Park. (2019). A Study on the Educational Game Design for Practicing Energy Saving in Elementary School Students, Journal of Convergence for Information Technology, 14-20. DOI : 10.22156/CS4SMB.2019.9.5.014
  17. D. B. Chertoff, B. Goldiez & J. J. LaViola. (2010). Virtual Experience Test: A virtual environment evaluation questionnaire, Journal of 2010 IEEE Virtual Reality Conference (VR), 2422-2427. DOI : 10.1109/vr.2010.5444804