• 제목/요약/키워드: Automation & Robot technology

검색결과 208건 처리시간 0.026초

Implementation of Tracking and Capturing a Moving Object using a Mobile Robot

  • Kim Sang-joo;Park Jin-woo;Lee Jang-Myung
    • International Journal of Control, Automation, and Systems
    • /
    • 제3권3호
    • /
    • pp.444-452
    • /
    • 2005
  • A new scheme for a mobile robot to track and capture a moving object using camera images is proposed. The moving object is assumed to be a point-object and is projected onto an image plane to form a geometrical constraint equation that provides the position data of the object based on the kinematics of the active camera. Uncertainties in position estimation caused by the point-object assumption are compensated for using the Kalman filter. To generate the shortest time path to capture the moving object, the linear and angular velocities are estimated and utilized. In this paper, the experimental results of the tracking and capturing of a target object with the mobile robot are presented.

행위 기반 로봇에서의 행위의 자동 설계 기법 (A Self-Designing Method of Behaviors in Behavior-Based Robotics)

  • 윤도영;오상록;박귀태
    • 제어로봇시스템학회논문지
    • /
    • 제8권7호
    • /
    • pp.607-612
    • /
    • 2002
  • An automatic design method of behaviors in behavior-based robotics is proposed. With this method, a robot can design its behaviors by itself without aids of human designer. Automating design procedure of behaviors can make the human designer free from somewhat tedious endeavor that requires to predict all possible situations in which the robot will work and to design a suitable behavior for each situation. A simple reinforcement learning strategy is the main frame of this method and the key parameter of the learning process is significant change of reward value. A successful application to mobile robot navigation is reported too.

A Lane Based Obstacle Avoidance Method for Mobile Robot Navigation

  • Ko, Nak-Yong;Reid G. Simmons;Kim, Koung-Suk
    • Journal of Mechanical Science and Technology
    • /
    • 제17권11호
    • /
    • pp.1693-1703
    • /
    • 2003
  • This paper presents a new local obstacle avoidance method for indoor mobile robots. The method uses a new directional approach called the Lane Method. The Lane Method is combined with a velocity space method i.e., the Curvature-Velocity Method to form the Lane-Curvature Method (LCM). The Lane Method divides the work area into lanes, and then chooses the best lane to follow to optimize travel along a desired goal heading. A local heading is then calculated for entering and following the best lane, and CVM uses this local heading to determine the optimal translational and rotational velocities, considering some physical limitations and environmental constraint. By combining both the directional and velocity space methods, LCM yields safe collision-free motion as well as smooth motion taking the physical limitations of the robot motion into account.

무인FA를 위한 자율주행 로봇의 경로계획 및 실시간 궤적제어에 관한 연구 (A Study on a Path Planning and Real-Time Trajectory Control of Autonomous Travelling Robot for Unmanned FA)

  • 김현근;심현석;황원준
    • 한국산업융합학회 논문집
    • /
    • 제19권2호
    • /
    • pp.75-80
    • /
    • 2016
  • This study proposes a efficient technology to control the optimal trajectory planning and real-time implementation method which can perform autonomous travelling for unmaned factory automation. Online path planning should plan and execute alternately in a short time, and hence it enables the robot avoid unknown dynamic obstacles which suddenly appear on robot's path. Based on Route planning and control algorithm, we suggested representation of edge cost, heuristic function, and priority queue management, to make a modified Route planning algorithm. Performance of the proposed algorithm is verified by simulation test.

적응제어를 위한 Manipulator의 미끄럼 감지 알고리즘에 관한 연구 (A Study On Slippage Sensing Algorithm of Manipulator for An Adaptive Control)

  • 이영재
    • 한국정보통신학회논문지
    • /
    • 제2권3호
    • /
    • pp.303-308
    • /
    • 1998
  • As the technology of industrial automation using robot system grows the rapid advance, productivity improvement and decrease in number of maintenance, management occur in many fields. Therefore, more various and intelligent robot motions are needed without human being help. Considering this situation, the need of robot with various, fast and safe acting sensors are demanded. In these sensings, the slippage sensing gives us specific information between ripper and object while grasps the object. In this paper, we proposed new slippage sensing algorithm for various and intelligent robot motion. So, optimal grasping force control and compensation of position error is possible for an adaptive task execution using adaptive control.

  • PDF

다관절 로봇을 이용한 건설용 3D프린팅 출력시스템 개발 (Development of a 3D Printing System for Construction Using an Articulated Robot )

  • 이기륜;노현주;정남철
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 가을학술발표대회논문집
    • /
    • pp.263-264
    • /
    • 2023
  • 3D printing technology is recognized as a core technology that will lead the next generation, and is a field that can have a large ripple effect if it innovates the existing construction production method. Therefore, this study deals with the development of a 3d printing system using an articulated robot for construction purposes. In this system, ABB robot was used to control the developed cement gun accurately. The system is composed of mixer to mix cementitious materials, pump to transfer the materials, abb robot to motion control and cement gun to extrude the materials to print required construction parts. Using the system developed in this study, a suitable mix ratio of cementitious materials was found and successively printed a 1m high structure that demonstrated possibility of printing structures using 3d printer. In the future, we plan to build a foundation for automated construction through research on construction methods and materials that can be continuously layered for the system.

  • PDF

Intelligent Position Control of a Vertical Rotating Single Arm Robot Using BLDC Servo Drive

  • Manikandan, R.;Arulmozhiyal, R.
    • Journal of Power Electronics
    • /
    • 제16권1호
    • /
    • pp.205-216
    • /
    • 2016
  • The manufacturing sector resorts to automation to increase production and homogeneity of products during mass production, without increasing scarce, expensive, and unreliable manpower. Automation in the form of multiple robotic arms that handle materials in all directions in different stages of the process is proven to be the best way to increase production. This paper thoroughly investigates robotic single-arm movements, that is, 360° vertical rotation, with the help of a brushless DC motor, controlled by a fuzzy proportional-integral-derivative (PID) controller. This paper also deals with the design and performance of the fuzzy-based PID controller used to control vertical movement against the limited scope of conventional PID feedback controller and how the torque of the arm is affected by the fuzzy PID controller in the four quadrants to ensure constant speed and accident-free operation despite the influence of gravitational force. The design was simulated through MATLAB/SIMULINK and integrated with dSPACE DS1104-based hardware to verify the dynamic behaviors of the arm.

로봇 관절용 고출력 BLDC 모터 및 유성 감속기 개발에 관한 연구 (An study on the development of BLDC motor and Planetary gearheads for robot joint)

  • 김주한;류세현;정중기;성하경;이종배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.135-137
    • /
    • 2002
  • Many application in robotics, telecommunication, automation systems etc require powerful actuator. The powerful actuator have Speeds up to high speed and high output torque efficiencies. To accomplish a powerful actuator, these powerful motor have to be combined with gearheads of the same outer diameter. So, we have developed BLDC motor and planetary type gearheads as powerful actuator. The BLDC motor have advantages that compact structure, high efficiency, high reliability. The Planetary type gearheads have advantages that same-axle structure, high torque transmission, low noise in comparison with spur gearheads. In this study included BLDC motor and planetary type gearheads design, manufacture. This time study peformed for actuator of entertainment robot.

  • PDF

복수의 양팔로봇을 적용한 휴대폰 셀 생산시스템의 자동화 (Automation of Cell Production System for Cellular Phones based on Multi-dual-arm Robots)

  • 도현민;김두형;경진호
    • 한국생산제조학회지
    • /
    • 제23권6호
    • /
    • pp.580-589
    • /
    • 2014
  • Demands for automation in the cell production process of IT products are becoming increasingly sophisticated. In particular, the dual-arm robot has drawn attention as a solution because it has a flexibility and works similarly to humans. In this paper, we propose an automation system for cellular phone packing processes using two dual-arm robots. Applied robots are designed with specifications to meet the requirements of cellular phone packing jobs. In addition, a robotic cell production system is proposed by applying a method of task allocation for efficient packing of cellular phones. Specifically, a task is assigned to reduce takt-time and to avoid collision between two robots. Finally, we discuss some experimental results that include the packing job of five unit boxes with seven kinds of accessories.

A Study on Infra-Technology of RCP Interaction System

  • Kim, Seung-Woo;Choe, Jae-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1121-1125
    • /
    • 2004
  • The RT(Robot Technology) has been developed as the next generation of a future technology. According to the 2002 technical report from Mitsubishi R&D center, IT(Information Technology) and RT(Robotic Technology) fusion system will grow five times larger than the current IT market at the year 2015. Moreover, a recent IEEE report predicts that most people will have a robot in the next ten years. RCP(Robotic Cellular Phone), CP(Cellular Phone) having personal robot services, will be an intermediate hi-tech personal machine between one CP a person and one robot a person generations. RCP infra consists of $RCP^{Mobility}$, $RCP^{Interaction}$, $RCP^{Integration}$ technologies. For $RCP^{Mobility}$, human-friendly motion automation and personal service with walking and arming ability are developed. $RCP^{Interaction}$ ability is achieved by modeling an emotion-generating engine and $RCP^{Integration}$ that recognizes environmental and self conditions is developed. By joining intelligent algorithms and CP communication network with the three base modules, a RCP system is constructed. Especially, the RCP interaction system is really focused in this paper. The $RCP^{interaction}$(Robotic Cellular Phone for Interaction) is to be developed as an emotional model CP as shown in figure 1. $RCP^{interaction}$ refers to the sensitivity expression and the link technology of communication of the CP. It is interface technology between human and CP through various emotional models. The interactive emotion functions are designed through differing patterns of vibrator beat frequencies and a feeling system created by a smell injection switching control. As the music influences a person, one can feel a variety of emotion from the vibrator's beats, by converting musical chord frequencies into vibrator beat frequencies. So, this paper presents the definition, the basic theory and experiment results of the RCP interaction system. We confirm a good performance of the RCP interaction system through the experiment results.

  • PDF