• Title/Summary/Keyword: Automatic vehicle control

Search Result 302, Processing Time 0.022 seconds

Two-Degree-of Freedom Fuzzy Neural Network Control System And Its Application To Vehicle Control

  • Sekine, Satoshi;Yamaguchi, Toru;Tamagawa, Kouichirou;Endo, Tunekazu
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1121-1124
    • /
    • 1993
  • We propose two-degree-of-freedom fuzzy neural network control systems. It has a hierarchical structure of two sets of control knowledge, thus it is easy to extract and refine fuzzy rules before and after the operation has started, and the number of fuzzy rules is reduced. In addition an example application of automatic vehicle operation is reported and its usefulness is shown simulation.

  • PDF

Automatic Transmission Design Analysis of the Tractor from Advanced Company (선진사 트랙터 자동변속기 설계 분석)

  • Jung, G.H.
    • Journal of Drive and Control
    • /
    • v.10 no.4
    • /
    • pp.7-13
    • /
    • 2013
  • A tractor is a farm vehicle that is designed to provide a high tractive effort at low speed. It is used for versatile agricultural tasks such as hauling a trailer, tillage, mowing and construction work. As the intensity of work increases, tractors equipped with automatic transmission become popular due to the work convenience. Though manual and power shuttle transmissions are produced by domestic corporations, development for full-automatic power shift transmissions has never been challenged, and so related technology level is quite low. This paper gives a survey of the automatic transmissions from advanced foreign company, which includes layout of gear train, the way hydraulics controls clutches and brakes, electronic control system. The results are expected to be utilized as a basis in the development of original power train design for tractor.

Modeling & Dynamic Analysis for Four Wheel Steering Vehicles (4WS 차량의 모델링 및 동적 해석)

  • Jang, J.H.;Jeong, W.S.;Han, C.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.3
    • /
    • pp.66-78
    • /
    • 1995
  • In this paper, we address vehicle modeling and dynamic analysis of four wheel steering systems (4WS). 4WS is one of the devices used for the improvement of vehicle maneuverability and stability. All research done here is based on a production vehicle from a manufacturer. To study actual system response, a three dimensional, full vehicle model was created. In past research of this type, simple, two dimensional, bicycle vehicle models were typically used. First, we modelled and performed a dynamic analysis on a conventional two wheel steering(2WS) vehicle. The modeling and analysis for this model and subsequent 4WS vehicles were performed using ADAMS(Automatic Dynamic Analysis of Mechanical Systems) software. After the original vehicle model was verified with actual experiment results, the rear steering mechanism for the 4WS vehicle was modelled and the rear suspension was changed to McPherson-type forming a four wheel independent suspension system. Three different 4WS systems were analyzed. The first system applied a mechanical linkage between the front and rear steering mechanisms. The second and third systems used, simple control logic based on the speed and yaw rate of the vehicle. 4WS vehicle proved dynamic results through double lane change test.

  • PDF

Design of Retarder Control Logic for Cooling System of Commercial Vehicle (상용차의 냉각 시스템을 고려한 리타더 제어로직 설계)

  • Lee, Chang-Kyu;Jeong, Jong-Kyu;Kim, Gwan-Hyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.668-669
    • /
    • 2016
  • The retarder as a hydraulic brake system in order to assist a service brakes in commercial vehicle is operated by automatic and manual mode due to driver. Braking energy by retarder operation is transmitted to the engine radiator of vehicle cooling system, passing through the retarder oil heat exchanger. At this moment, the retarder ECU performs the function that is controlled a braking torque with consideration for automatic and manual mode, temperature of retarder oil/water, engine coolant temperature, vehicle speed, and etc. In this paper, it deals with the design of retarder control logic and the results of retarder braking performance test regarding a cooling system of retarder and vehicle.

  • PDF

A Study On a Lane Keeping Control in a Curved Road and Lane Changing Method to Avoid Collision of a Vehicle

  • Lee, seungchul;Kwangsuck Boo;Jeonghoon Song
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.107.2-107
    • /
    • 2002
  • The objective of this study is to propose a lane changing and keeping method on a curved road for an automatic guidance of a vehicle. It is well known that the speed control of a vehicle in a curved road is essential in terms of vehicle stability and passenger safety because centrifugal force makes a vehicle to be on out of lane. And it is also natural to avoid the collision with other cars or obstructions with keeping the stability and drivability. The vehicle pose and the road curvature were calculated by geometrically fusing sensor data from camera image, tachometer and steering wheel encoder though the Perception Net in which not only the state variables, but also the corresponding uncer...

  • PDF

A Study on the Effective Scanning Trajectory using Manipulator for Underground Object Detection (매니퓰레이터를 이용한 지하 매설물 탐지의 효율적 탐지경로에 관한 연구)

  • Lee, Myung-Chun;Shin, Ho-Cheol;Yoon, Jong-Hoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.9-15
    • /
    • 2012
  • This paper shows an effective scanning trajectory for a mine detection device that is one of the mission equipments of unmanned ground vehicle. The mine detection device is composed of a mine-detection sensor, and a 4 DOF manipulator enabling sensor position control. There are three modes that manage the mine detection device: passive, semi-automatic, and automatic. The automatic mode is used the most. This paper suggests a scanning method that makes shape of 8. This method prevents missing target area and enhances scanning speed when the mine detection device scans the ground surface in automatic mode. The suggested method is verified by simulations and experiments.

Development of Hardware-in-the-Loop Simulator for Testing Embedded System of Automatic Transmission (자동변속기용 임베디드 시스템 성능 시험을 위한 Hardware-in-the Loop 시뮬레이터 구축)

  • Jang, In-Gyu;Seo, In-Keun;Jeon, Jae-Wook;Hwang, Sung-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.3
    • /
    • pp.301-306
    • /
    • 2008
  • Drivers are becoming more fatigued and uncomfortable with increase in traffic density, and this condition can lead to slower reaction time. Consequently, they may face the danger of traffic accidents due to their inability to cope with frequent gear shifting. To reduce this risk, some drivers prefer automatic transmission (AT) over manual transmission (MT). The AT offers more superior drivability and less shifting shock than the MT; therefore, the AT market share has been increasing. The AT is controlled by an electronic control unit (ECU), which provides better shifting performance. The transmission control unit (TCU) is a higher-value-added product, so the companies that have advanced technologies end to evade technology transfer. With more cars gradually using the ECU, the TCU is expected to be faster and more efficient for organic communication and arithmetic processing between the control systems than the l6-bit controller. In this paper, the model of an automatic transmission vehicle using MATLAB/Simulink is developed for the Hardware in-the-Loop (HIL) simulation with a 32-bit embedded system, and also the AT control logic for shifting is developed by using MATLAB/Simulink. The developed AT control logic, transformed automatically by real time workshop toolbox, is loaded to a 32-bit embedded system platform based on Freescale's MPC565. With both vehicle model and 32-bit embedded system platform, we make the HIL simulation system and HIL simulation of AT based on real time operating system (RTOS) is performed. According to the simulation results, the developed HIL simulator will be used for the performance test of embedded system for AT with low cost and effort.

Adaptive Compensation Control of Vehicle Automatic Transmissions for Smooth Shift Transients Based on Intelligent Supervisor

  • Kim, Deok-Ho;Han, Jin-O;Sin, Byeong-Gwan;Lee, Gyu-Il
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.11
    • /
    • pp.1472-1481
    • /
    • 2001
  • In this paper, an advanced shift controller that supervises the shift transients with adaptive compensation is presented. Modern shift control systems for vehicle automatic transmission are designe d to provide smooth transients for passengers' comfort and better component durability. In the conventional methods, lots of testing and calibration works have been done to tune gains of the controller, but it does not assure optimum shift quality at all times owing to system variations often caused by uncertainties in shifting hydraulic systems and external disturbances. In the proposed control scheme, an adaptive compensation controller with intelligent supervisor is implemented to achieve improved shift quality over the system variations. The control input pattern which generates clutch pressure commands in hydraulic actuating systems, is updated through a learning process to adjust for each subsequent shift based on continuous monitoring of shifting performance and environmental changes. The proposed algorithm is implemented and evaluated on the experimental test setup. Results from the experimental studies for several operation modes show both improved performance and adaptability of the proposed shift controller to uncertain changes of the shifting environment in vehicle power transmission systems.

  • PDF

A development of Intelligent Parking Control System Using Sensor-based on Arduino

  • LIM, Myung-Jae;JUNG, Dong-Kun;KWON, Young-Man
    • Korean Journal of Artificial Intelligence
    • /
    • v.9 no.2
    • /
    • pp.29-34
    • /
    • 2021
  • In this paper, for efficient parking control, in an Arduino environment, an intelligent parking control prototype was implemented to provide parking control and parking guidance information using HC-SR2O4 and RC522. The main elements of intelligent parking control are vehicle recognition sensors, parking control facilities, and integrated operating software. Whether the vehicle is parked on the parking surface may be confirmed through sensor or intelligent camera image analysis. Parking control equipment products include parking guidance and parking available display devices, vehicle number recognition cameras, and intelligent parking assistance systems. This paper applies and implements ultrasonic sensors and RFID concepts based on Arduino, recognizes registered vehicles, and displays empty spaces. When a vehicle enters a parking space to handle this function, the automatic parking management system distinguishes the registered vehicle from the external vehicle through the RC522 sensor. In addition, after checking whether the parking slot is empty, the HC-SR204 sensor is displayed through the LED so that the driver can visually check it. RFID is designed to check the parking status of the server in real time and provide the driver with optimal route service to the parking slot.

Simulator Design for Bimodal Tram (바이모달트램을 위한 시뮬레이터 설계)

  • Byun, Yeun-Sub;Mok, Jei-Kyun;Yun, Kyoung-Han;Kim, Young-Chol
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.450-451
    • /
    • 2008
  • The Bimodal tram is developed in KRRI (Korea Railroad Research Institute). This vehicle will be used in the public transportation system. The Bimodal tram has the advantages of both bus and train. Bus system has the advantages of flexibility of the routes delivering passengers to the destination and easy accessibility. Train is to meet the scheduled arrival and massive public transportations. The vehicle is the rubber tired tram and is all wheel steered single articulation. The vehicle can be automatically operated by navigation control system (NCS). For the automatic driving, the vehicle lanes will be marked with permanent magnets that are buried in the road. The control algorithm developed for navigation control has to be verified before being applied in the vehicle. In this purpose, we design the simulator for controller test of the bimodal tram.

  • PDF