The purpose of this study is to develop an automatic software system for bone age evaluation and to evaluate its accuracy in testing and feasibility in clinical practice. 20394 left-hand radiographs of healthy children (2-18 years old) were collected from China Skeletal Development Survey data of 1998 and China Skeletal Development Survey data of 2005. Three experienced radiologists and China-05 standard maker jointly evaluate the stages of bone development and the reference bone age was determined by consensus. 1020 from 20394 radiographs were picked randomly as test set and the remaining 19374 radiographs as training set and validation set. Accuracy of the automatic software system for bone age assessment is evaluated in test set and two clinical test sets. Compared with the reference standard, the automatic software system based on RUS-CHN for bone age assessment has a 0.04 years old mean difference, ±0.40 years old in 95% confidence interval by single reading, a 85.6% percentage agreement of ratings, a 93.7% bone age accuracy rate, 0.17 years old of MAD, 0.29 years old of RMS; Compared with the reference standard, the automatic software system based on TW3-C RUS has a 0.04 years old mean difference, a ±0.38 years old in 95% confidence interval by single reading, a 90.9% percentage agreement of ratings, a 93.2% bone age accuracy rate, a 0.16 years of MAD, and a 0.28 years of RMS. Automatic software system, AI-China-05 showed reliably accuracy in bone age estimation and steady determination in different clinical test sets.
Ilsang Woo;Areum Lee;Seung Chai Jung;Hyunna Lee;Namkug Kim;Se Jin Cho;Donghyun Kim;Jungbin Lee;Leonard Sunwoo;Dong-Wha Kang
Korean Journal of Radiology
/
v.20
no.8
/
pp.1275-1284
/
2019
Objective: To develop algorithms using convolutional neural networks (CNNs) for automatic segmentation of acute ischemic lesions on diffusion-weighted imaging (DWI) and compare them with conventional algorithms, including a thresholding-based segmentation. Materials and Methods: Between September 2005 and August 2015, 429 patients presenting with acute cerebral ischemia (training:validation:test set = 246:89:94) were retrospectively enrolled in this study, which was performed under Institutional Review Board approval. Ground truth segmentations for acute ischemic lesions on DWI were manually drawn under the consensus of two expert radiologists. CNN algorithms were developed using two-dimensional U-Net with squeeze-and-excitation blocks (U-Net) and a DenseNet with squeeze-and-excitation blocks (DenseNet) with squeeze-and-excitation operations for automatic segmentation of acute ischemic lesions on DWI. The CNN algorithms were compared with conventional algorithms based on DWI and the apparent diffusion coefficient (ADC) signal intensity. The performances of the algorithms were assessed using the Dice index with 5-fold cross-validation. The Dice indices were analyzed according to infarct volumes (< 10 mL, ≥ 10 mL), number of infarcts (≤ 5, 6-10, ≥ 11), and b-value of 1000 (b1000) signal intensities (< 50, 50-100, > 100), time intervals to DWI, and DWI protocols. Results: The CNN algorithms were significantly superior to conventional algorithms (p < 0.001). Dice indices for the CNN algorithms were 0.85 for U-Net and DenseNet and 0.86 for an ensemble of U-Net and DenseNet, while the indices were 0.58 for ADC-b1000 and b1000-ADC and 0.52 for the commercial ADC algorithm. The Dice indices for small and large lesions, respectively, were 0.81 and 0.88 with U-Net, 0.80 and 0.88 with DenseNet, and 0.82 and 0.89 with the ensemble of U-Net and DenseNet. The CNN algorithms showed significant differences in Dice indices according to infarct volumes (p < 0.001). Conclusion: The CNN algorithm for automatic segmentation of acute ischemic lesions on DWI achieved Dice indices greater than or equal to 0.85 and showed superior performance to conventional algorithms.
In this paper, we propose a new automatic taxonomy generation algorithm for the audio genre classification. The proposed algorithm automatically generates hierarchical taxonomy based on the estimated classification accuracy at all possible nodes. The estimation of classification accuracy in the proposed algorithm is conducted by applying the training data to classifier using k-fold cross validation. Subsequent classification accuracy is then to be tested at every node which consists of two clusters by applying one-versus-one support vector machine. In order to assess the performance of the proposed algorithm, we extracted various features which represent characteristics such as timbre, rhythm, pitch and so on. Then, we investigated classification performance using the proposed algorithm and previous flat classifiers. The classification accuracy reaches to 89 percent with proposed scheme, which is 5 to 25 percent higher than the previous flat classification methods. Using low-dimensional feature vectors, in particular, it is 10 to 25 percent higher than previous algorithms for classification experiments.
Objective: To evaluate the accuracy of a deep learning-based automated segmentation of the left ventricle (LV) myocardium using cardiac CT. Materials and Methods: To develop a fully automated algorithm, 100 subjects with coronary artery disease were randomly selected as a development set (50 training / 20 validation / 30 internal test). An experienced cardiac radiologist generated the manual segmentation of the development set. The trained model was evaluated using 1000 validation set generated by an experienced technician. Visual assessment was performed to compare the manual and automatic segmentations. In a quantitative analysis, sensitivity and specificity were calculated according to the number of pixels where two three-dimensional masks of the manual and deep learning segmentations overlapped. Similarity indices, such as the Dice similarity coefficient (DSC), were used to evaluate the margin of each segmented masks. Results: The sensitivity and specificity of automated segmentation for each segment (1-16 segments) were high (85.5-100.0%). The DSC was 88.3 ± 6.2%. Among randomly selected 100 cases, all manual segmentation and deep learning masks for visual analysis were classified as very accurate to mostly accurate and there were no inaccurate cases (manual vs. deep learning: very accurate, 31 vs. 53; accurate, 64 vs. 39; mostly accurate, 15 vs. 8). The number of very accurate cases for deep learning masks was greater than that for manually segmented masks. Conclusion: We present deep learning-based automatic segmentation of the LV myocardium and the results are comparable to manual segmentation data with high sensitivity, specificity, and high similarity scores.
Purpose: Joint label fusion (JLF) is a popular multi-atlas-based segmentation algorithm, which compensates for dependent errors that may exist between atlases. However, in order to get good segmentation results, it is very important to set the several free parameters of the algorithm to optimal values. In this study, we first investigate the feasibility of a JLF algorithm for prostate segmentation in MR images, and then suggest the optimal set of parameters for the automatic prostate segmentation by validating the results of each parameter combination. Materials and Methods: We acquired T2-weighted prostate MR images from 20 normal heathy volunteers and did a series of cross validations for every set of parameters of JLF. In each case, the atlases were rigidly registered for the target image. Then, we calculated their voting weights for label fusion from each combination of JLF's parameters (rpxy, rpz, rsxy, rsz, β). We evaluated the segmentation performances by five validation metrics of the Prostate MR Image Segmentation challenge. Results: As the number of voxels participating in the voting weight calculation and the number of referenced atlases is increased, the overall segmentation performance is gradually improved. The JLF algorithm showed the best results for dice similarity coefficient, 0.8495 ± 0.0392; relative volume difference, 15.2353 ± 17.2350; absolute relative volume difference, 18.8710 ± 13.1546; 95% Hausdorff distance, 7.2366 ± 1.8502; and average boundary distance, 2.2107 ± 0.4972; in parameters of rpxy = 10, rpz = 1, rsxy = 3, rsz = 1, and β = 3. Conclusion: The evaluated results showed the feasibility of the JLF algorithm for automatic segmentation of prostate MRI. This empirical analysis of segmentation results by label fusion allows for the appropriate setting of parameters.
Kim, Sunhyo;Jung, Seom-Kyu;Kang, Donhyug;Kim, Mira;Cho, Sungho
The Journal of the Acoustical Society of Korea
/
v.39
no.4
/
pp.279-285
/
2020
The study on the temporal and spatial monitoring of passing vessels is important in terms of protection and management the marine ecosystem in the coastal area. In this paper, we propose the automatic detection technique of passing vessel by utilizing an artificial intelligence technology and broadband striation patterns which are characteristic of broadband noise radiated by passing vessel. Acoustic measurements to collect underwater noise spectrum images and ship navigation information were conducted in the southern region of Jeju Island in South Korea for 12 days (2016.07.15-07.26). And the convolution neural network model is optimized through learning and validation processes based on the collected images. The automatic detection performance of passing vessel is evaluated by precision (0.936), recall (0.830), average precision (0.824), and accuracy (0.949). In conclusion, the possibility of the automatic detection technique of passing vessel is confirmed by using an artificial intelligence technology, and a future study is proposed from the results of this study.
Proceedings of the Korea Water Resources Association Conference
/
2018.05a
/
pp.448-448
/
2018
In this study, the regression models (Load ESTimator and eight-parameter model) were evaluated to estimate instantaneous pollutant loads under various criteria and optimization methods. As shown in the results, LOADEST commonly used in interpolating pollutant loads could not necessarily provide the best results with the automatic selected regression model. It is inferred that the various regression models in LOADEST need to be considered to find the best solution based on the characteristics of watersheds applied. The recently developed eight-parameter model integrated with Genetic Algorithm (GA) and Gradient Descent Method (GDM) were also compared with LOADEST indicating that the eight-parameter model performed better than LOADEST, but it showed different behaviors in calibration and validation. The eight-parameter model with GDM could reproduce the nitrogen loads properly outside of calibration period (validation). Furthermore, the accuracy and precision of model estimations were evaluated using various criteria (e.g., $R^2$ and gradient and constant of linear regression line). The results showed higher precisions with the $R^2$ values closed to 1.0 in LOADEST and better accuracy with the constants (in linear regression line) closed to 0.0 in the eight-parameter model with GDM. In hence, based on these finding we recommend that users need to evaluate the regression models under various criteria and calibration methods to provide the more accurate and precise results for pollutant load estimations.
Journal of the Korean Society for Aviation and Aeronautics
/
v.29
no.4
/
pp.37-44
/
2021
In case of South Korea, the airspace which airlines can operate is extremely limited due to the military operational area located within the Incheon flight information region. As a result, safety problems such as mid-air collision between aircraft or Traffic alert and Collision Avoidance System Resolution Advisory (TCAS RA) may occur with higher probability than in wider airspace. In order to prevent such safety problems, an mid-air collision risk detection model based on Detect-And-Avoid (DAA) well clear metrics is investigated. The model calculates the risk of mid-air collision between aircraft using aircraft trajectory data. In this paper, the practical use of DAA well clear metrics based model has been validated. Aviation safety data such as aviation safety mandatory report and Automatic Dependent Surveillance Broadcast is used to measure the performance of the model. The attributes of individual aircraft track data is analyzed to correct the threshold of each parameter of the model.
A mercury sphygmomanometer (MS) has been the gold standard for pediatric blood pressure (BP) measurements, and diagnosing hypertension is critical. However, because of environmental issues, other alternatives are needed. Noninvasive BP measurement devices are largely divided into auscultatory and oscillometric types. The aneroid sphygmomanometer, the currently used auscultatory method, is inferior to MS in terms of limitations such as validation and regular calibration and difficult to apply to infants, in whom Korotkoff sounds are not audible. The oscillometric method uses an automatic device that eliminates errors caused by human observers and has the advantage of being easy to use; however, owing to its measurement accuracy issues, the development of an international validation protocol for children is important. The hybrid method, which combines the auscultatory and electronic methods, solves some of these problems by eliminating the observer bias of terminal digit preference while maintaining measurement accuracy; however, the auscultatory method remains limited. As the age-related characteristics of the pediatric group are heterogeneous, it is necessary to reconsider the appropriate BP measurement method suitable for this indication. In addition, the mobile application-based BP measurement market is growing rapidly with the development of smartphone applications. Although more research is still needed on their accuracy, many experts expect that mobile application-based BP measurement will effectively reduce medical costs due to increased ease of access and early BP management.
KIPS Transactions on Software and Data Engineering
/
v.6
no.7
/
pp.329-336
/
2017
As web apps have evolved faster and become more complex, their validation and verification have become essential for their development and maintenance. Efficient validation and verification require understanding of how web components collaborate with each other to meet user requests. Thus, this paper proposes a new approach to automatically extracting such collaboration when a user issues a request for a new page. The approach is dynamic and less sensitive to web development languages and technologies, compared to static extraction approaches. It considers an orignal web app as a black-box and does not change the app's behavior. The empirical evaluation shows that our approach can be applicable to extract component collaboration and understand the behavior of open source web apps.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.