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Purpose: Joint label fusion (JLF) is a popular multi-atlas-based segmentation 
algorithm, which compensates for dependent errors that may exist between atlases. 
However, in order to get good segmentation results, it is very important to set 
the several free parameters of the algorithm to optimal values. In this study, we 
first investigate the feasibility of a JLF algorithm for prostate segmentation in MR 
images, and then suggest the optimal set of parameters for the automatic prostate 
segmentation by validating the results of each parameter combination.
Materials and Methods: We acquired T2-weighted prostate MR images from 
20 normal heathy volunteers and did a series of cross validations for every set 
of parameters of JLF. In each case, the atlases were rigidly registered for the 
target image. Then, we calculated their voting weights for label fusion from each 
combination of JLF’s parameters (rpxy, rpz, rsxy, rsz, β). We evaluated the segmentation 
performances by five validation metrics of the Prostate MR Image Segmentation 
challenge.
Results:  As the number of voxels participating in the voting weight calculation and 
the number of referenced atlases is increased, the overall segmentation performance 
is gradually improved. The JLF algorithm showed the best results for dice similarity 
coefficient, 0.8495 ± 0.0392; relative volume difference, 15.2353 ± 17.2350; absolute 
relative volume difference, 18.8710 ± 13.1546; 95% Hausdorff distance, 7.2366 ± 
1.8502; and average boundary distance, 2.2107 ± 0.4972; in parameters of rpxy = 10, 
rpz = 1, rsxy = 3, rsz = 1, and β = 3.
Conclusion: The evaluated results showed the feasibility of the JLF algorithm for 
automatic segmentation of prostate MRI. This empirical analysis of segmentation 
results by label fusion allows for the appropriate setting of parameters.
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INTRODUCTION

Prostate cancer is a worldwide major health concern. 
According to the American Cancer Society in 2019, prostate 
cancer will record the highest incidence (20%) and the 
second-highest death rate (10%) among all cancer sites 
in American men (1). Generally, diverse medical imaging 
modalities, such as computed tomography (CT), magnetic 
resonance imaging (MRI) and trans-rectal ultrasound, are 
used for the diagnosis and treatment of prostate cancer, 
because they can provide intuitive anatomical information 
in a non-invasive manner. Of them, MRI is most commonly 
used because of its better soft-tissue contrast and higher 
sensitivity for detecting prostate cancer (2-5).

Segmentation of the prostate in an MR image is a primary 
essential step in clinical applications, such as radiotherapy 
planning, biopsy, and computer-aided diagnosis system 
(6). The delineated prostate area is directly used in the 
subsequent processes, such as boundary localization, volume 
estimation, or multimodal registration of the prostate area, 
which requires accurate and robust segmentation results.

In segmenting prostate regions from MR images, there are 
some challenges. Usually, since the prostate MR image has 
thick slices, it is difficult to distinguish the exact prostate 
area that exhibits various changes in appearance among 
the MR image slices. In addition, each patient has different 
sizes and shapes of the prostate, and the internal structure 
of the prostate is complicated. Furthermore, although 
the manual segmentation approach of the radiologist is 
available to delineate the prostate area of the MR image 
by slice, it is time consuming, is prone to error, and shows 
inter- and intra-observer differences caused by perspective 
differences.

To address these challenging tasks in manual prostate 
segmentation, many automatic or semi-automatic 
segmentation approaches have been suggested, ranging 
from low-level schemes that involve little prior information 
to high-level schemes that highly rely on prior knowledge 
(7-9). Among them, the principles of multi-atlas-
based segmentation have been successfully applied to 
segmentation of the prostate area in MR images (10-12). In 
contrast to other low-level segmentation approaches, such 
as edge-based or deformable-model-based segmentation, 
this high-level approach has a major advantage in 
introducing a priori knowledge about the distribution of 
the internal structure of the target (8). This property leads 
to the effective segmentation of the prostate area, which 
has a complex internal structure, such as a central zone 

and a peripheral zone under the different sizes, shapes, and 
intensity distribution of the prostate for each patient.

In this study, we implemented the multi-atlas 
segmentation with the joint label fusion (MAS-JLF) 
algorithm and examined the optimal parameters for 
automatic segmentation of the prostate in T2-weighted 
MRI. We used twenty T2-wegihted MR images from our 
hospital for our experiments and evaluated the performance 
of the proposed algorithm by measurements used in the 
PROMISE12 challenge, a prostate segmentation challenge 
of the 2012 Medical Image Computing and Computer 
Assisted Interventions Conference (MICCAI12) (13) .

MATERIALS AND METHODS

Multi-Atlas-Based Label Fusion 
In the multi-atlas segmentation procedure, a target image 

FT is segmented by referencing a set of n registered atlases 

A1 = (F1, S1), … , An = (Fn, Sn).

Here, the ith atlas Ai consisted of a set of (Fi, Si) which 
denotes the registered atlas image of the target image 
and its corresponding segmented target region, or label 
image, respectively. Each registered atlas is considered 
to be one candidate segmentation of the target and as 
containing some segmentation/registration errors. Under 
the assumption that the label errors caused by registration 
and segmentation are independent, the label fusion process, 
integrating the atlases, produces better segmentation of 
the target image. Since most of the label fusion methods, 
however, deliberate removing independent errors in each 
atlas, the dependent label errors induced by different 
atlases may be correlated still remain. Therefore, the JLF 
was proposed to reduce the dependent label errors. 

Joint Label Fusion 
The JLF algorithm suggests including a dependency matrix 

of the pairwise atlases when computing weights in the 
label fusion process (14). By searching the minimum total 
expected error between true segmentation ST(x) and the 
consensus segmented result for the target label image S(x), 
adequate weights are distributed to each atlas.

In order to find the minimum total expected error, first of 
all, the JLF algorithm models segmentation error in binary 
representation as:



125www.i-mri.org

https://doi.org/10.13104/imri.2020.24.3.123

ST(x) = Si(x) + δi(x),	 [1]

where δi(x) indicates the label difference between the ith 
atlas label image (ST(x)) and the target true segmentation 
(ST (x)) at the same position x. Since the label error occurs 
when the value of the label difference is -1 or 1, the label 
difference can be described as a discrete random variable, 
characterized by the following distribution:

qi (x) = p(|δi (x)| = 1|FT, F1,… , Fn).	 [2]

The JLF algorithm applies a weighted voting scheme 
that assigns non-negative local weights to each atlas to 
estimate the consensus segmentation, which in weighted 
voting is obtained by 

ST(x) =
n

wi(x)Si(x)∑
i=1

	 [3]

and the sum of weights is 1 in Eq [3].
With Eqs. [1] and [3], the total expected error can be 

found as follows: 
Eδ

1
(x), …, δn(x) [(ST(x) - S(x)) | FT, F1,…,Fn]

n 2

=Eδ
1
(x), …, δn(x) ∑ wi(x)δi(x)  | FT, F1,…,Fn

i=1
	 [4]

=
n n
∑ ∑ wi(x)wj(x)Eδ

1
(x),δj

(x)[δ
i(x)δj(x)|FT,F1,…,Fn]

i=1 j=1

 

   = Wt
xMxWx,

where Wx is the set of voting weights [W1(x);…;Wn(x)], 
t represents transpose, and Mx(i,j), called a pairwise 
dependency matrix from atlas i and j, is estimated from 
intensity dis-similarity between each pair of atlas images i and j.

Mx(i,j) = p(δi(x) δj(x) = 1|{FT(y),Fi(y),Fj(y)|y∈N(x)})  
∝[∑y∈N(x)|FT(y) - Fi(y)||FT(y) - Fj(y)|]β,	 [5]

where N(x) indicates a cubical neighborhood around x, the 
size of the local appearance patch is determined by patch 
radius r, and β indicates the controlling parameter for 
weight distribution to estimate Mx. By applying Lagrange 
multipliers with the pre-determined dependency matrix 
Mx, the optimal weight set Wx that minimizes the total 
expected error can be found. 

Registration Error Refinement in JLF 
In the JLF algorithm, registration errors can be regulated 

by finding neighborhood point x' around x that produces a 
better local intensity similarity patch Fi[N(x')] against the 
original local patch Fi[N(x)] in the same ith registered atlas 
image. As for finding the point x' that makes the local patch 
Fi[N(x')] most similar to the target local patch FT[N(x)], 
radius rs of a cubical local search patch Ns(x) is applied.

The local search correspondence map between the ith 
atlas and the target images can be described as follows:

εi(x) = arg min||Fi(N(x')) - FT(N(x))||2	  	 [6]
x'∈Ns(x).

Once the set of maps {εi} is filled, the definition of the 
consensus segmentation, Eq. [3], is refined as

n
ST(x) = ∑ wi(εi(x))Si(εi(x))

i=1

	 [7]

Experiments and Evaluation
Twenty healthy volunteers underwent T2-weighted 

imaging under the approval of the local Institutional 
Review Board. We obtained all MRI data with a 3T clinical 
MR scanner (Achieva TX, Philips Healthcare, Best, the 
Netherlands) with a phased-arrayed coil. The parameters 
were as follows: repetition time/echo time, 3459/100 msec; 
slice thickness, 3 mm; interslice gap, 1 mm; matrix, 568 × 
341 matrix; field of view, 20 cm and in-plane resolution, 
0.35 × 0.59 × 4 mm3. For each subject, the whole prostate 
area was manually defined by an experienced radiologist 
and used as the standard of reference. We evaluated the 
segmentation performance for each combination of JLF 
algorithm parameters by doing a leave-one-out test. At 
first, we set one of the 20 atlases as the target image, and 
randomly selected the reference images from the remaining 
19 atlases (10, 15, and 19 reference images). Then, prior 
to the execution of the label fusion algorithm, we did the 
registration of multiple atlases for the target image. In this 
process, we used FMRIB's Software Library (FSL, http://
www.fmrib.ox.ac.uk/fsl) (15) for rigid body registration 
in 7 degrees of freedom. Next, we did whole prostate 
segmentations for the target image with each set of input 
parameters of all possible combinations of JLF. In this 
way, we iteratively conducted the JLF to find the optimal 
parameters from combinations within the free parameters 
until all the atlas were set to the target image once. For 
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optimal parameter searching, we investigated different 
patch-radius parameters for the xy plane and z axis, unlike 
the patch parameters of the original JLF algorithm with 
the same radius for the x, y, and z axes. Since the original 
JLF algorithm assumed that all participating images were 
made by using isovoxels, all patches were cubical. However, 
because our images are anisotropic, with slice thicknesses 
much longer than in-plane resolution, it is not appropriate 
to set the z-axis radius of each patch equal to the xy-plane 
radius. Therefore the parameters in our study are as follows:

•	rp_xy, the radius in the xy-plane of the local appearance 
patch N used for the similarity-based dependency 
matrix Mx estimation; 

•	rp_z, the radius in the z axis of the local appearance 
patch; 

•	rs_xy, the radius in the xy plane of the local searching 
patch Ns that is used in refining registration errors; 

•	rs_z, the radius in the z axis of the local searching patch; 
and

•	β, the parameter used to transfer image similarities in 
the pairwise joint label difference term. 

The range of each parameter was as follows: 
•	rp_xy∈ {3, 4, 5, 6, 7, 8, 9, 10}, 
•	rp_z∈ {0, 1}, 
•	rs_xy∈ {0, 1, 2, 3}, 
•	rs_z∈ {0, 1}, and 
•	β∈ {1, 2, 3, 4, 5, 6, 7, 8}. 
The unit of radius for a patch is a voxel in our 

experiments. Thereafter, we evaluated the 20480 prostate 
segmentation results by each combination of parameters 
and the atlas set by the four metrics described in the 
Evaluation Method section. We used the implemented 
JLF software imported from Github's ANT repository 
(https://github.com /stnava/ANTs/blob/master/Scripts/
antsJointLabelFusion.sh) and executed it on an Intel®Core 
™ i7-6850K CPU @ 3.60 GHz × 12, and 62 GB memory 
environment.

Evaluation Method
The PROMISE12 challenge was held to allow a 

fair comparison of segmentation methods based on 
performance and robustness (11). In the challenge, each 
result of a proposed segmentation algorithm was evaluated 
using volume and boundary measurements to give more 
a complete perspective of segmentation accuracy. In our 
study, we used the metrics of dice similarity coefficient 
(DSC), relative volume difference (RVD), average boundary 
distance (ABD), absolute relative volume difference (aRVD), 

and 95% Hausdorff distance (HD) to evaluate the prostate 
segmentation results produced by JLF for the various 
parameters. 

The DSC can be acquired by 

D(X,Y) =
2|X ∩ Y|
|X| + |Y|

,	 [8]

where |X| denotes the number of voxels in the reference 
region and |Y| indicates the number of voxels in the 
algorithm produced region. The RVD was calculated using:

RVD(X,Y) = 100×(
|X|

-1)
|Y|

.	 [9]

Therefore, the aRVD is

aRVD(X,Y) = |RVD(X,Y)|.	 [10]

In fact, PROMISE 12 used RVD to measure only the 
average tendency of whether the algorithm is over- or 
under-segmentation. In this work, we also measured aRVD 
by, Eq. [10].

The regular HD is calculated as:

HDasym(Xs,Ys) = max min d(x,y)
x∈Xsy∈Ys

	 [11]

HD(Xs, Ys) = max(HDasym(Xs, Ys), HDasym(Ys, Xs)),	 [12]

where Xs indicates the set of surface points of the reference 
region and Ys is that of algorithm-produced regions. The 
Euclidean distance operator is indicated as d. Since the 
regular Hausdorff distance is too sensitive to trust, the 
PROMISE12 challenge adopted the 95th percentile of the 
asymmetric 95% HD in place of the maximum. as we did 
also.

At last, the ABD is described as:

ABD(Xs, Ys) =
1

(∑x∈Xsmin
y∈Ys

d(x,y) + ∑y∈Ysmin
x∈Xs

 d(y,x))
NXs+NYs

.	

[12]
We computed all the metrics employed in this study in 

three dimensions and applied them to not only the entire 
prostate region but also the apex and base parts of the 
prostate. In the slice dimension, we considered the cranial 
and caudal third of the prostate volume as the base and 
apex, respectively.
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Fig. 1. Overview of the general workflow of the multi-atlas segmentation.

Fig. 2. Prostate segmentation processing with JLF for a representative subject. The voxels in the overlapping region 
of rigid-body registered atlas MR images into a target MR image (a) are considered as prostate candidates. From the 
candidates, posterior probability maps of voxels for non-prostate (b) and prostate (c) are developed and used to find the 
final segmentation. Final segmentation results are seen at the apex (d), midgland (e) and base (f) of the prostate. Red, gold 
standard. Yellow, automatically segmented prostate region. 

a b c

d e f
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RESULTS

MAS-JLF for Automatic Segmentation of the Prostate 
in MRI

Figure 1 shows the flowchart of the MAS with JLF for the 
automatic segmentation of the prostate in T2-weighted 
MRI. The multi-atlas was spatially transformed into a 
target image, and then the registered multi-atlas and labels 
were jointly fused to produce the posterior probability 
map for segmentation of the prostate. Figure 2 shows the 
representative results using the MAS-JLF algorithm for the 
segmentation of the prostate in T2-weighted MRI.

Optimization of the Patch Radius
In the MAS-JLF algorithm, the registered multi-atlas was 

fused to make a final result using the local similarity (dis-
similarity) between the multi-atlases. The local similarity 
was computed depending on the patch radius, which 
determined how many voxels were included to compute 
the similarity between the multi-atlases. We examined 
the performance of the MAS-JLF according to the various 
patch radii. Figure 3 shows the results of the segmentation 
performance evaluation according to the z-axis radius 
of each patch (rp_z, rs_z) and the xy-plane radius of the 

appearance patch (rp_xy). In our work, the parameters rs_

xy and β are set to 3. Both patches showed the best 
segmentation performance when the z-axis radius was 1, 
and the best xy-plane radius of the appearance patch was 
10 (rp_z=1, rs_z=1, and rp_xy=10). This result is close to the 
common-sense notion that local similarity computations 
and registration error corrections based on wider spatial 
information yield better performance.

Optimization of the Search Radius
The mis -registration of the multi-atlas into the target 

image could be lead to a poor performance of the MAS-JLF 
algorithm. To compensate for the error of the registration, 
we defined the search radius in the MAS-JLF algorithm. 
Figure 4 compares the segmentation performance of 
the parameter combinations of the search patch’s xy-
plane radius rs_xy and the weight distribution controlling 
parameter β. The xy-plane radius and z-axis radius of the 
local appearance patch (rp_z, rp_xy), and the z-axis radius of 
the search patch (rs_z) are set to the best values described 
right above, aRVD. When the parameter rs_xy was set to 3, 
the segmentation results were the best for all metrics. Also, 
JLF showed the best segmentation performance when β was 
3. The volume of the prostate region-of-interest obtained 

Fig. 3. Evaluation of prostate segmentation performance for the parameters rp_xy, rp_z, rs_z of JLF algorithm by metrics of DSC, 
aRVD, ABD and 95% HD. Here the rs_xy, and β are set to 3. 
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from a manual approach and automatic segmentation by 
JLF with the optimal parameters (rp_xy= 10, rp_z= 1, rs_xy= 3, 
rs_z= 1, and β = 3) was 40328 ± 11463 and 44628 ± 5923 
mm3, respectively (P > 0.05). The DSC of the segmentation 
results for the parameters was 0.8495 ± 0.0392, RVD was 
15.2353 ± 17.2350, aRVD was 18.8710 ± 13.1546, 95% HD 
was 7.2366 ± 1.8502, and ABD was 2.2107 ± 0.4972. Table 
1 shows the segmentation performance validation results 

for the prostate sub-regions consisting of base, midgland, 
and apex with DSC, RVD, aRVD, 95% HD, and ABD metrics 
from the best parameters of JLF. The mean time of the JLF 
algorithm for optimal parameters was 109 min 6 sec.

Optimization of the Number of Multi-Atlases
We examined the performance of the MAS-JLF algorithm 

according to the number of multi-atlases. Figure 5 presents 

Fig. 4. Evaluation of prostate segmentation performance for the parameters rs_xy, and β of JLF algorithm by metrics of DSC, 
ABD and 95% HD. Here the rp_xy, rp_z, rs_z are set to 10, 1, and 1, respectively. 

Fig. 5. Comparisons of segmentation performance evaluation according to the number of referenced atlases. The JLF 
algorithm is set to the best parameters: rp_xy= 10, rp_z= 1, rs_xy= 3, rs_z= 1, and β = 3.
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the results for the 10, 15, and 20 atlases, which confirm the 
principle of MAS that results are more stable and accurate 
as the number of referenced atlases increases. However, the 
average time cost according to the number of referenced 
atlases was 45 min 12 sec for 10, 80 min 12 sec for 15, 
and 109 min 6 sec for 20. Therefore, the number of atlases 
appropriate for the application environment should be 
selected in practice.

DISCUSSION

In a multi-atlas-based segmentation algorithm using 
weights by local similarity, the segmentation performance 
is seriously influenced by the number of referenced atlases 
and the size of the local appearance patch effects. The more 
atlases are used, the more stable and better segmentation is 
possible, but the computational complexity also increases. 
This makes it difficult to apply the MAS approach to 
segmentation tasks in addition to registration, which 
must be done as preprocessing. Therefore, it is definitely 
necessary to investigate the parameter settings and number 
of atlases that are relatively stable, perform well, and 
consume the least time 

The computational complexity of the JLF algorithm is 
proportional to the size of the local appearance patch 
and of the search patch. Thus, we did experiments to find 
the optimum patch shape with better performance when 
referring to a similar number of voxels.

In the original JLF study (14), the local shape patch 
had the same size radius for all three (x, y, and z) axes to 
calculate the local similarity between the atlas and the 
target from the cubical region. However, they segmented 
brain hippocampal T1-weighted MR images with 
1.0×1.0×1.0 mm3 voxel resolution and 176 slice dimensions. 
Since our dataset has 21 slice dimensions in 0.35 × 0.59 × 4 
mm3 voxel resolution, setting the local appearance patch to 
have the same radius on the x, y, and z axes could not refer 

to the cubical region. Therefore, when applying JLF to non-
isovoxel images, it is more effective to set a cuboid patch 
that references more voxels of a high-resolution plane than 
a cubical patch does. 

Actually, the major factor that increases the computational 
complexity of JLF is the size of the search patch needed to 
correct the registration errors. The search patch may have 
a different shape and radius depending on the performance 
of the registration. However, we assume that the optimal 
shape of the search patch is related to the voxel resolution 
in the image, because the registration algorithm is based 
on the appearance of the image. In our study, we did 
an additional experiment to examine the performance 
of the MAS-JLF algorithm according to search radius of 
0×0×0, 1×1×1, 2×2×2, and 3×3×3 when β was fixed at 3 
(Supplementary Fig. 1). From these additional experiments, 
we can get a better result if the radius is 1 or 2. Given these 
experimental results, we set the range of the z-axis radius 
of the search patch and local appearance patch in this 
study to {0,1}.

In optimal parameters selection, unlike other parameters, 
which have a common tendency for all measurement metrics, 
it was hard to find the best value for β, because of the 
ambiguity of the measurement results. In PROMISE12, the 
values from the four metrics were aggregated and then the 
segmentation results of the algorithm were scored. But the 
scoring method was not available for us, because it requires 
having manual segmentation results from a second observer 
with a career of about two years besides the ground truth 
from an expert. So we concluded thar the qualitatively 
best parameter value of β as 3, which showed stabler and 
better performance for the other values in the four metrics.

For the segmentation performance evaluation of the 
sub-regions, the criteria for dividing the prostate from 
the image into base, center, and apex followed those of 
PROMISE12 (13). The base and apex of the prostate are the 
most difficult areas to segment and are a challenging task 
for all prostate segmentation algorithms. In Table 1, JLF also 

Table 1. Prostate Segmentation Performance Evaluation for the Best Parameters: rpxy= 10, rpz= 1, rs_xy= 3, rsz= 1, and β = 3

Variable Overall Base Midgland Apex

Dice similarity coefficient 0.84595 ± 0.0392 0.8187 ± 0.0479 0.9055 ± 0.0434 0.7463 ± 0.1391

Relative volume difference 15.2353 ± 17.2350 8.2183 ± 25.3651 8.1217 ± 14.2708 70.5312 ± 89.3609

Absolute relative volume difference 18.8710 ± 13.1546 19.8726 ± 17.7766 10.6937 ± 12.4605 70.6291 ± 89.2835

95% Hausdorff distance 7.2366 ± 1.8502 7.0904 ± 1.5296 25.2330 ± 2.0698 7.2721 ± 2.7053

Average boundary distance 2.2107 ± 0.4972 2.4385 ± 0.5223 1.7169 ± 0.7466 2.7907 ± 1.2635
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worked less well for the base and apex than in the center, 
like other proposed segmentation algorithms. Especially, 
the apex region showed higher RVD and aRVD values 
than did the other two regions’ we think that the under-
segmentation tendency of JLF is mainly due to the apex.

CONCLUSION

In this paper, we segment the whole prostate using a 
multi-atlas-based JLF algorithm in T2-weghted MR images 
and investigate the feasibility of the JLF algorithm for the 
prostate segmentation by finding the optimal parameters. 
To segment the prostate, we modified the parameters of the 
JLF algorithm appropriately to fit our work and evaluated 
the segmentation performance in each parameter set by 
five evaluation metrics that are widely used. In our study, 
the result using the JLF algorithm is the best for DSC, 
0.8495 ± 0.0392; RVD,15.2353 ± 17.2350; aRVD, 18.8710 
± 13.1546; 95% HD, 7.2366 ± 1.8502; and ABD, 2.2107 ± 
0.4972, using parameters of rp_xy= 10, rp_z= 1, rs_xy= 3, rs_z= 
1, and β = 3. This suggests the feasibility of the JLF method 
for automatic segmentation of prostate MR images. Finding 
the optimized parameters for segmenting a particular organ 
is important for practical clinical applications. Accordingly, 
at the end, we hope that the results of this study carefully 
pave the way for the prostate segmentation studies using 
MAS.

Supplementary Materials
The Data Supplement is available with this article at 

https://doi.org/10.13104/imri.2020.24.3.123
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