Acknowledgement
The authors gratefully acknowledge technical support from the Medical Imaging and Robotics Laboratory (MIRL), Department of Radiology, Asan Medical Center.
References
- Wheeler HM, Mlynash M, Inoue M, Tipirneni A, Liggins J, Zaharchuk G, et al.; DEFUSE 2 Investigators. Early diffusion-weighted imaging and perfusion-weighted imaging lesion volumes forecast final infarct size in DEFUSE 2. Stroke 2013;44:681-685 https://doi.org/10.1161/STROKEAHA.111.000135
- Muir KW, Buchan A, von Kummer R, Rother J, Baron JC. Imaging of acute stroke. Lancet Neurol 2006;5:755-768 https://doi.org/10.1016/S1474-4422(06)70545-2
- Chen L, Bentley P, Rueckert D. Fully automatic acute ischemic lesion segmentation in DWI using convolutional neural networks. Neuroimage Clin 2017;15:633-643 https://doi.org/10.1016/j.nicl.2017.06.016
- Mah YH, Jager R, Kennard C, Husain M, Nachev P. A new method for automated high-dimensional lesion segmentation evaluated in vascular injury and applied to the human occipital lobe. Cortex 2014;56:51-63 https://doi.org/10.1016/j.cortex.2012.12.008
- Boldsen JK, Engedal TS, Pedraza S, Cho TH, Thomalla G, Nighoghossian N, et al. Better diffusion segmentation in acute ischemic stroke through automatic tree learning anomaly segmentation. Front Neuroinform 2018;12:21
- Straka M, Albers GW, Bammer R. Real-time diffusion-perfusion mismatch analysis in acute stroke. J Magn Reson Imaging 2010;32:1024-1037 https://doi.org/10.1002/jmri.22338
- Forbes F, Doyle S, Garcia-Lorenzo D, Barillot C, Dojat M. Adaptive weighted fusion of multiple MR sequences for brain lesion segmentation. 2010 IEEE international symposium on biomedical imaging: from nano to macro;2010 April 14-17;Rotterdam, Netherlands
- Charoensuk W, Covavisaruch N, Lerdlum S, Likitjaroen Y. Acute stroke brain infarct segmentation in DWI images. Int J Pharm Med Biol Sci 2015;4:115-122 https://doi.org/10.18178/ijpmbs.4.2.115-122
- Prakash KNB, Gupta V, Bilello M, Beauchamp NJ, Nowinski WL. Identification, segmentation, and image property study of acute infarcts in diffusion-weighted images by using a probabilistic neural network and adaptive Gaussian mixture model. Acad Radiol 2006;13:1474-1484 https://doi.org/10.1016/j.acra.2006.09.045
- Mohd Saad N, Noor NSM, Abdullah AR, Sobri Muda, Muda AF, Abdul Rahman NNS. Automated stroke lesion detection and diagnosis system. International MultiConference of engineers and computer scientists;2017 March 15-17;Hong Kong, China
- Maier O, Wilms M, von der Gablentz J, Kramer UM, Munte TF, Handels H. Extra tree forests for sub-acute ischemic stroke lesion segmentation in MR sequences. J Neurosci Methods 2015;240:89-100 https://doi.org/10.1016/j.jneumeth.2014.11.011
- Peng Y, Zhang X, Hu Q. Segmentation of hyper-acute ischemic infarcts from diffusion weighted imaging based on support vector machine. Journal of Computer and Communications 2015;3:152-157 https://doi.org/10.4236/jcc.2015.311024
- Nag MK, Koley S, China D, Sadhu AK, Balaji R, Ghosh S, et al. Computer-assisted delineation of cerebral infarct from diffusion-weighted MRI using Gaussian mixture model. Int J Comput Assist Radiol Surg 2017;12:539-552 https://doi.org/10.1007/s11548-017-1520-x
- Warach S, Chien D, Li W, Ronthal M, Edelman RR. Fast magnetic resonance diffusion-weighted imaging of acute human stroke. Neurology 1992;42:1717-1723 https://doi.org/10.1212/WNL.42.9.1717
- van Everdingen KJ, van der Grond J, Kappelle LJ, Ramos LMP, Mali WPTM. Diffusion-weighted magnetic resonance imaging in acute stroke. Stroke 1998;29:1783-1790 https://doi.org/10.1161/01.STR.29.9.1783
- Purushotham A, Campbell BC, Straka M, Mlynash M, Olivot JM, Bammer R, et al. Apparent diffusion coefficient threshold for delineation of ischemic core. Int J Stroke 2015;10:348-353 https://doi.org/10.1111/ijs.12068
- Ogata T, Christensen S, Nagakane Y, Ma H, Campbell BC, Churilov L, et al.; EPITHET and DEFUSE Investigators. The effects of alteplase 3 to 6 hours after stroke in the EPITHETDEFUSE combined dataset: post hoc case-control study. Stroke 2013;44:87-93 https://doi.org/10.1161/STROKEAHA.112.668301
- Lee JG, Jun S, Cho YW, Lee H, Kim GB, Seo JB, et al. Deep learning in medical imaging: general overview. Korean J Radiol 2017;18:570-584 https://doi.org/10.3348/kjr.2017.18.4.570
- Woo I, Lee AR, Lee H, Choi K, Kang DW, Jung SC, et al. Sementic segmentation with squeeze-and-excitation block: application to infarct segmentation in DWI. NIPS 2017: the thirty-first annual conference on Neural Information Processing Systems;2017 December 4-9;Long Beach, CA, USA
- Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation. 18th Medical Image Computing and Computer Assisted Interventions (MICCAI);2015 October 5-9;Munich, Germany
- Jegou S, Drozdzal M, Vazquez D, Romero A, Bengio Y. The one hundred layers tiramisu: fully convolutional DenseNets for semantic segmentation. IEEE Conference on Computer Vision and Pattern Recognition Workshop (CVPRW);2017 July 21-26; Honolulu, HI, USA
- Hu J, Shen L, Sun G. Squeeze-and-excitation networks. IEEE conference on Computer Vision and Pattern Recognition(CVPR);2018 June 18-22; Salt Lake City, UT, USA
- Nair V, Hinton GE. Rectified linear units improve restricted boltzmann machines. 27th international conference on international conference on machine learning;2010 June 21-24;Haifa, Israel
- Shinohara RT, Sweeney EM, Goldsmith J, Shiee N, Mateen FJ, Calabresi PA, et al.; Australian Imaging Biomarkers Lifestyle Flagship Study of Ageing; Alzheimer's Disease Neuroimaging Initiative. Statistical normalization techniques for magnetic resonance imaging. Neuroimage Clin 2014;6:9-19 https://doi.org/10.1016/j.nicl.2014.08.008
- Noh H, Hong S, Han B. Learning deconvolution network for semantic segmentation. IEEE international conference on computer vision (ICCV);2015 December 7-13; Santiago, Chile
- Huang G, Liu Z, van der Maaten L, Weinberger KQ. Densely connected convolutional networks. IEEE conference on Computer Vision and Pattern Recognition(CVPR);2017 July 21-26; Honolulu, HI, USA