• Title/Summary/Keyword: Automatic segmentation

Search Result 515, Processing Time 0.04 seconds

A Study on Detection Method of Multi-Homed Host and Implementation of Automatic Detection System for Multi-Homed Host (망혼용단말 탐지방법에 대한 연구 및 자동탐지시스템 구현)

  • Lee, Mi-hwa;Yoon, Ji-won
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.2
    • /
    • pp.457-469
    • /
    • 2018
  • This study aimed to investigate the fundamental reasons for the presence of multi-homed host and the risks associated with such risky system. Furthermore, multi-homed host detection methods that have been researched and developed so far were compared and analyzed to determine areas for improvement. Based on the results, we propose the model of an improved automatic detection system and we implemented it. The experimental environment was configured to simulate the actual network configuration and endpoints of an organization employing network segmentation. And the functionality and performance of the detection system were finally measured while generating multi-homed hosts by category, after the developed detection system had been installed in the experiment environment. We confirmed that the system work correctly without false-positive, false-negative in the scope of this study. To the best of our knowledge, the presented detection system is the first academic work targeting multi-homed host under agent-based.

Automatic Extraction of Major Object in the Image based on Image Composition (영상구도에 근거한 영상내의 주요객체 자동추출 기법)

  • Kang, Seon-Do;Yoo, Hun-Woo;Shin, Young-Geun;Jang, Dong-Sik
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.3
    • /
    • pp.8-17
    • /
    • 2008
  • A new algorithm for automatic extraction of interesting objects is proposed in this paper. The proposed algorithm can be summarized in two steps. First, segmentation of color image that split interesting objects and backgrounds is performed. According to the research stating, 'Humans perceive things by contracting color into three to four essential colors,' a color image is segmented into three regions utilizing k-mean algorithm, followed by annexing the regions when the similarities of them exceeds the critical value based on the calculation of degrees in the histogram similarity, Second, identifying the interesting objects out of the segmented image, partitioned by the image composition theory, is performed. To have a good picture, it is important to adjust positions of interesting objects according to picture composition. Extracting objects is a retro-deduction process using a weighted mask designed upon the triangular composition of picture. To prove the quality of the proposed method, experiments are performed over four hundreds images as well as comparison with recently proposed KMCC and GBIS methods.

Automatic Generation of 3D Building Models using a Draft Map (도화원도를 이용한 3차원 건물모델의 자동생성)

  • Kim, Seong-Joon;Min, Seong-Hong;Lee, Dong-Cheon;Park, Jin-Ho;Lee, Im-Pyeong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.15 no.2 s.40
    • /
    • pp.3-14
    • /
    • 2007
  • This study proposes an automatic method to generate 3D building models using a draft map, which is an intermediate product generated during the map generation process based on aerial photos. The proposed method is to generate a terrain model, roof models, and wall models sequentially from the limited 3D information extracted from an existing draft map. Based on the planar fitting error of the roof corner points, the roof model is generated as a single planar facet or a multiple planar structure. The first type is derived using a robust estimation method while the second type is constructed through segmentation and merging based on a triangular irregular network. Each edge of this roof model is then projected to the terrain model to create a wall facet. The experimental results from its application to real data indicates that the building models of various shapes in wide areas are successfully generated. The proposed method is evaluated to be an cost and time effective method since it utilizes the existing data.

  • PDF

An Improved Automatic Music Transcription Method Using TV-Filter and Optimal Note Combination (TV-필터와 최적 음표조합을 이용한 개선된 가변템포 음악채보방법)

  • Ju, Young-Ho;Lee, Joonwhoan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.4
    • /
    • pp.371-377
    • /
    • 2013
  • This paper proposes three methods for improving the accuracy of auto-music transcription considering with time-varying tempo from monophonic sound. The first one that uses TV(Total Variation) filter for smoothing the pitch data reduces the fragmentation in the pitch segmentation result. Also, the measure finding method that combines three different ways based on pitch and energy of sound data, respectively as well as based on rules produces more stable result. In addition the temporal result of note-length encoding is corrected in optimal way that the resulted encoding minimizes the sum of quantization error in a measure while the sum of note-lengths is equal to the number of beats. In the experiment with 16 children songs, we obtained the improved result in which measure finding was complete, the accuracy of encoding for note-length and pitch was about 91.3 and 86.7, respectively.

Automatic Photovoltaic Panel Area Extraction from UAV Thermal Infrared Images

  • Kim, Dusik;Youn, Junhee;Kim, Changyoon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.6
    • /
    • pp.559-568
    • /
    • 2016
  • For the economic management of photovoltaic power plants, it is necessary to regularly monitor the panels within the plants to detect malfunctions. Thermal infrared image cameras are generally used for monitoring, since malfunctioning panels emit higher temperatures compared to those that are functioning. Recently, technologies that observe photovoltaic arrays by mounting thermal infrared cameras on UAVs (Unmanned Aerial Vehicle) are being developed for the efficient monitoring of large-scale photovoltaic power plants. However, the technologies developed until now have had the shortcomings of having to analyze the images manually to detect malfunctioning panels, which is time-consuming. In this paper, we propose an automatic photovoltaic panel area extraction algorithm for thermal infrared images acquired via a UAV. In the thermal infrared images, panel boundaries are presented as obvious linear features, and the panels are regularly arranged. Therefore, we exaggerate the linear features with a vertical and horizontal filtering algorithm, and apply a modified hierarchical histogram clustering method to extract candidates of panel boundaries. Among the candidates, initial panel areas are extracted by exclusion editing with the results of the photovoltaic array area detection. In this step, thresholding and image morphological algorithms are applied. Finally, panel areas are refined with the geometry of the surrounding panels. The accuracy of the results is evaluated quantitatively by manually digitized data, and a mean completeness of 95.0%, a mean correctness of 96.9%, and mean quality of 92.1 percent are obtained with the proposed algorithm.

Crack Detection Method for Tunnel Lining Surfaces using Ternary Classifier

  • Han, Jeong Hoon;Kim, In Soo;Lee, Cheol Hee;Moon, Young Shik
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.9
    • /
    • pp.3797-3822
    • /
    • 2020
  • The inspection of cracks on the surface of tunnel linings is a common method of evaluate the condition of the tunnel. In particular, determining the thickness and shape of a crack is important because it indicates the external forces applied to the tunnel and the current condition of the concrete structure. Recently, several automatic crack detection methods have been proposed to identify cracks using captured tunnel lining images. These methods apply an image-segmentation mechanism with well-annotated datasets. However, generating the ground truths requires many resources, and the small proportion of cracks in the images cause a class-imbalance problem. A weakly annotated dataset is generated to reduce resource consumption and avoid the class-imbalance problem. However, the use of the dataset results in a large number of false positives and requires post-processing for accurate crack detection. To overcome these issues, we propose a crack detection method using a ternary classifier. The proposed method significantly reduces the false positive rate, and the performance (as measured by the F1 score) is improved by 0.33 compared to previous methods. These results demonstrate the effectiveness of the proposed method.

Parametric morphing of subject-specific NURBS models for Human Proximal Femurs Subject to Femoral Functions (해부학적 기능을 고려한 환자맞춤형 근위대퇴골 모델의 파라메트릭 변형 방안)

  • Park, Byoung-Keon;Wook, Chae-Jae;Kim, Jay-Jung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.6
    • /
    • pp.458-466
    • /
    • 2011
  • The morphology of a bone is closely associated with its biomechanical response. Thus, much research has been focused on analyzing the effects of variation of bone morphology with subject-specific models. Subject-specific models, which are generally achieved from 3D imaging devices like CT and MRI, incorporate more of the detailed information that makes a model unique. Hence, it may predict individual responses more accurately. Despite these powerful characteristics, specific models are not easily parameterized to the extent possible with statistical models because of their morphologic complexities. Thus, it is still proven challenging to analyze morphologic variations of subject-specific models across changes due to aging or disease. The aim of this article is to propose a generic and robust parametric morphing method for a subject-specific bone structure. We demonstrate this by using the proposed method on a model of a human proximal femur. Automatic segmentation algorithms are also presented to parameterize the specific model efficiently. A total of 48 femur models were evaluated for defining morphing vector fields. Also, several anatomical and mechanical functions of femur were considered as morphing constraints, and the NURBS interpolating technique was applied in the method to guarantee the generality of our morphed results.

Parametrized Construction of Virtual Drivers' Reach Motion to Seat Belt (매개변수로 제어가능한 운전자의 안전벨트 뻗침 모션 생성)

  • Seo, Hye-Won;Cordier, Frederic;Choi, Woo-Jin;Choi, Hyung-Yun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.16 no.4
    • /
    • pp.249-259
    • /
    • 2011
  • In this paper we present our work on the parameterized construction of virtual drivers' reach motion to seat belt, by using motion capture data. A user can generate a new reach motion by controlling a number of parameters. We approach the problem by using multiple sets of example reach motions and learning the relation between the labeling parameters and the motion data. The work is composed of three tasks. First, we construct a motion database using multiple sets of labeled motion clips obtained by using a motion capture device. This involves removing the redundancy of each motion clip by using PCA (Principal Component Analysis), and establishing temporal correspondence among different motion clips by automatic segmentation and piecewise time warping of each clip. Next, we compute motion blending functions by learning the relation between labeling parameters (age, hip base point (HBP), and height) and the motion parameters as represented by a set of PC coefficients. During runtime, on-line motion synthesis is accomplished by evaluating the motion blending function from the user-supplied control parameters.

Moving Object Tracking Using Active Contour Model (동적 윤곽 모델을 이용한 이동 물체 추적)

  • Han, Kyu-Bum;Baek, Yoon-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.5
    • /
    • pp.697-704
    • /
    • 2003
  • In this paper, the visual tracking system for arbitrary shaped moving object is proposed. The established tracking system can be divided into model based method that needs previous model for target object and image based method that uses image feature. In the model based method, the reliable tracking is possible, but simplification of the shape is necessary and the application is restricted to definite target mod el. On the other hand, in the image based method, the process speed can be increased, but the shape information is lost and the tracking system is sensitive to image noise. The proposed tracking system is composed of the extraction process that recognizes the existence of moving object and tracking process that extracts dynamic characteristics and shape information of the target objects. Specially, active contour model is used to effectively track the object that is undergoing shape change. In initializatio n process of the contour model, the semi-automatic operation can be avoided and the convergence speed of the contour can be increased by the proposed effective initialization method. Also, for the efficient solution of the correspondence problem in multiple objects tracking, the variation function that uses the variation of position structure in image frame and snake energy level is proposed. In order to verify the validity and effectiveness of the proposed tracking system, real time tracking experiment for multiple moving objects is implemented.

The Postprocessor of Automatic Segmentation for Synthesis Unit Generation (합성단위 자동생성을 위한 자동 음소 분할기 후처리에 대한 연구)

  • 박은영;김상훈;정재호
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.7
    • /
    • pp.50-56
    • /
    • 1998
  • 본 논문은 자동 음소 분할기의 음소 경계 오류를 보상하기 위한 후처리 (Postprocessing)에 관한 연구이다. 이는 현재 음성 합성을 위한 음성/언어학적 연구, 운율 모델링, 합성단위 자동 생성 연구 등에 대량의 음소 단위 분절과 음소 레이블링된 데이터의 필요성에 따른 연구의 일환이다. 특히 수작업에 의한 분절 및 레이블링은 일관성의 유지가 어렵고 긴 시간이 소요되므로 자동 분절 기술이 더욱 중요시 되고 있다. 따라서, 본 논문은 자동 분절 경계의 오류 범위를 줄일 수 있는 후처리기를 제안하여 자동 분절 결과를 직접 합성 단위로 사용할 수 있고 대량의 합성용 운율 데이터 베이스 구축에 유용함을 기술한다. 제안된 후처리기는 수작업으로 조정된 데이터의 특징 벡터를 다층 신경회로망 (MLP:Multi-layer perceptron)을 통해 학습을 한 후, ETRI(Electronics and Telecommunication Research Institute)에서 개발된 음성 언어 번역 시스템을 이용한 자동 분절 결과와 후처리기인 MLP를 이용하여 새로운 음소 경계를 추출한다. 고립단어로 발성된 합성 데이터베이스에서 후처리기로 보정된 분절 결과는 음성 언어 번역 시스템의 분할율보 다 약 25%의 향상된 성능을 보였으며, 절대 오류(|Hand label position-Auto label position |)는 약 39%가 향상되었다. 이는 MLP를 이용한 후처리기로 자동 분절 오류의 범위를 줄 일 수 있고, 대량의 합성용 운율 데이터 베이스 구축 및 합성 단위의 자동생성에 이용될 수 있음을 보이는 것이다.

  • PDF