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Abstract
For the economic management of photovoltaic power plants, it is necessary to regularly monitor the panels 

within the plants to detect malfunctions. Thermal infrared image cameras are generally used for monitoring, 
since malfunctioning panels emit higher temperatures compared to those that are functioning. Recently, 
technologies that observe photovoltaic arrays by mounting thermal infrared cameras on UAVs (Unmanned Aerial 
Vehicle) are being developed for the efficient monitoring of large-scale photovoltaic power plants. However, 
the technologies developed until now have had the shortcomings of having to analyze the images manually to 
detect malfunctioning panels, which is time-consuming. In this paper, we propose an automatic photovoltaic 
panel area extraction algorithm for thermal infrared images acquired via a UAV. In the thermal infrared images, 
panel boundaries are presented as obvious linear features, and the panels are regularly arranged. Therefore, we 
exaggerate the linear features with a vertical and horizontal filtering algorithm, and apply a modified hierarchical 
histogram clustering method to extract candidates of panel boundaries. Among the candidates, initial panel 
areas are extracted by exclusion editing with the results of the photovoltaic array area detection. In this step, 
thresholding and image morphological algorithms are applied. Finally, panel areas are refined with the geometry 
of the surrounding panels. The accuracy of the results is evaluated quantitatively by manually digitized data, and 
a mean completeness of 95.0%, a mean correctness of 96.9%, and mean quality of 92.1 percent are obtained with 
the proposed algorithm.
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1. Introduction

There are many ways of generating electricity to meet 
increasing energy demands. However, environmental 
pollution from thermal power generation and the potential 
risk of radiation leakages from nuclear power generation 
remain as risk factors for each system. Consequently, interest 
in eco-friendly energy has increased, and currently, related 
technologies are actively being developed. The photovoltaic 

energy generating system is a renewable energy and is of 
high interest. However, panels used for collecting solar 
energy in photovoltaic generating systems are exposed to the 
environment during operation. This causes short circuits due 
to corrosion of modules or decreases in generating efficiency 
due to cells being covered with dust or grime. Therefore, 
maintenance is required with regular inspections in order to 
preserve sufficient generation.

To detect photovoltaic panels with decreased generating 
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efficiency, manual analysis methods and performance 
measurement methods based on I-V curve analysis can be 
implemented. However, for the maintenance of large-scale 
photovoltaic power plants, manual analysis methods are 
expensive and time-consuming in detecting malfunctioning 
panels. The performance measurement method is difficult 
for monitoring the generated quantity of each panel. Hence, 
developing technology that can overcome the limits of 
existing maintenance methods is required.

Photovoltaic panels with decreased generating efficiency 
show higher temperatures in thermal infrared images 
compared to normal panels. Therefore, using thermal infrared 
images allows non-destructive testing for malfunctioning 
panels while the photovoltaic power plant is under operation. 
Furthermore, fast and accurate detection of malfunctioning 
panels is possible since it can also detect micro cracks that 
cause reduced generating efficiency, which are difficult 
to detect with the existing manual analysis method. These 
technological advantages are used to design the handheld 
thermal infrared cameras applied to test malfunctioning 
panels and for maintenance (Bazilian et al., 2002).

Recently, as UAVs have become popular, technologies for 
monitoring photovoltaic power plants by mounting thermal 
infrared cameras on UAVs have been developed (Buerhop 
and Scheuerpflug, 2014; Grimaccia et al., 2015; Quarter et 
al., 2014). Technologies developed until now were limited 
to detecting malfunctioning panels by manually analyzing 
the aerial thermal infrared images. The drawback of this 
technique is that it is time consuming, since analysis had to 
be done for every single image. Therefore, using computer 
vision algorithms to automatically detect malfunctioning 

panels is necessary. If an automatic detection technology is 
developed, malfunctioning panels can be selected quickly, 
without any manual decision-making.

In order to detect malfunctioning panels from aerial thermal 
infrared images, selecting the region of interest (i.e. the 
photovoltaic panel areas) from the images, is required. Here, 
extracted images must be able to form polygons for each panel, 
in order to extract the malfunctioning panels using profile 
analyses. The analyzed results of the edge extraction method, 
previously developed by Canny (Canny, 1986), Sobel etc., 
proved difficult for the single polygon formation around a panel 
area due to noise within and around the panel. Furthermore, 
applying the Hough operator line transform method resulted 
in excessive extraction of straight lines. This required applying 
manually simulated conditions, inappropriate for an automatic 
panel area extraction algorithm. Therefore, as a primary 
technique required to automatically extract malfunction panels 
from the thermal infrared images, we developed an algorithm 
for the automatic extraction of panel areas, expressed in a 
polygon format.

2. Panel Area Extraction Algorithm

In this study, thermal infrared images obtained previously 

Fig. 1. Sample of thermal infrared images (source: www.kitawa.de)
(A) (B) (C)

Subsection Specification
Frame Rate 30Hz

Field of View 25° × 19°
Minimum Focus Distance 0.25 m

Spectral Range 7.5 to 14µm

Table 1. The specification of the FLIR T620



Automatic Photovoltaic Panel Area Extraction from UAV Thermal Infrared Images

561  

from a relevant manufacturer are used. Company Paul 
Kitawa from Germany developed a drone loaded with the 
FLIR T620 thermal infrared camera, for photovoltaic power 
plant monitoring. Samples of thermal infrared images of the 
photovoltaic power plant taken using the drone are provided 
on Paul Kitawa’s website (www.kitawa.de). The specifications 
of the FLIR T620 are presented in Table 1. From these 
samples, three images (Fig. 1) with dimensions of 640×480 
pixels are selected as sample data. The specifications of the 
UAV are not provided on the website.

As shown in Fig. 1, photovoltaic panels can be identified with 
their higher temperatures compared to their surroundings. 
Most of the panel areas present roughly a steady temperature 
and the panel edges show lower temperatures compared to 
the panel area. Among all sample images, more than one 
hotspot panel is presented, and every panel array shows 
sections of high temperature in the lower part. However, 
turning the image to gray scale and eliminating blank spaces 
based on certain thresholds of intensity could not eliminate 
the noise in the lower part of the array. Therefore, an image 
segmentation technique was applied to extract individual 
polygons for each enclosed panel area.

The panel area extraction algorithm developed in this 
paper has a process of four stages, as described in Fig. 2. 
Firstly, candidates of the photovoltaic panel boundaries are 
extracted. To determine the edges of the photovoltaic panels, 
we use horizontal and vertical filters to emphasize the linear 
features. After that, we applied a modified hierarchical 
histogram clustering method, proposed in Youn et al. (2008), 
to select the maximum probability candidates. Secondly, 
photovoltaic array areas are detected with thresholding 

and morphological filtering. Thirdly, initial panel areas are 
extracted using exclusion editing. Among the candidates of 
panel boundaries, the candidates, which are located in the 
photovoltaic arrays, are excluded in this step. After this 
process, we can determine each panel’s initial polygon. 
However, these polygons still have an over-extracted area 
in the lower part of the photovoltaic arrays. Therefore, as a 
last step we refine the panel areas with the geometry of the 
surrounding panels. The case of (B) in Fig. 1 is used as an 
example to show the process of extracting the panel areas.

2.1 Extracting candidates for panel boundaries

The purpose of this step is producing candidates for panel 

(A) (B) (C)

Fig. 2. Flow chart of panel area extraction algorithm

Fig. 3. Results of applying horizontal and vertical filtering on a sample image. (A) Horizontal filtering result, 
(B) Vertical filtering result, and (C) Result of combining horizontal and vertical filtering
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boundaries which express the boundaries between panels. As 
seen in Fig. 1, the boundaries of the panels show obvious linear 
features. Therefore, we can select the pixels with maximum 
differences in intensities as candidates of panel boundary 
points. The original image is converted into grayscale, and 
filtering masks are applied. A 5×5 pixel window was applied 
as the space filter mask to apply horizontal and vertical 
filtering. Horizontal and vertical masks are expressed as hw 
and vw, as shown in eq. (1). The results obtained using the 
masks are shown in Fig. 3 (A) and (B), and the two results 
are combined in Fig. 3(c). In Fig. 3, bright pixels represent the 
higher correlation values.
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(1)

 
As shown in Fig. 3, applying the vertical and horizontal 

filters emphasized the linear features in each direction. 
Combining the filters resulted in a precise outline of the 
panels. Therefore, by detecting the pixels that show strong 
linear features as in Fig. 3 (A) and (B), we can clearly extract 
the candidates for panel boundaries.

In Fig. 4, the intensity profile at the location of the straight 
line in the gray scale image on the left is shown in graph (A) on 
the right. In graph (A), periodic signals that have a low intensity 
indicate the panel boundaries. Graph (B) shows the correlation 
(Vertical Filter Correlation, VFC) profile for the vertical filter 
result (Fig. 3 (B)) at the same location of the straight line in the 
gray scale image. Fig. 4 (C) presents the absolute value of VFC. 
Comparing Fig. 4 (A) with Fig. 4 (C), we know that the location 
of peak points in the profile graphs indicate the boundaries of 
the panels. To find the peak points, we apply the modified 
hierarchical histogram-clustering method, proposed in Youn 
et al. (2008), at the absolute value of VFC. Firstly, the highest 
peak in the profile graph is determined. Pixel discrepancies 
less than the threshold (±30 pixels for the horizontal filter and 
±20 pixels for the vertical filter) from the peak are checked 
as one set. The threshold value is determined considering the 
size of the panels, since the peaks correspond to the edges of 
the panels. The next highest peak is then determined, ignoring 
the previously checked sets. This process continues until all 

pixels are checked. The established peaks, in absolute value of 
VFC, are presented in Fig. 4 (C) as circles. Comparing Fig. 4 
(A) with (C), the peaks points agree with the panel boundaries. 
To obtain more accurate results, profiling directions should be 
parallel with panel array edges.

 

We apply the modified hierarchical histogram-clustering 
method to the results of the vertical and horizontal filtering. 
The peak points are then detected for every row and column, 
and the position of the peak points is stored in a void image. 
Fig. 5 (A) presents the detected peak points. In Fig. 5 (A), some 
pixels are connected, and others are not. Panel boundaries 
have connected pixel form. Therefore, pixels are required 
to enclose the outcome as much as possible by connecting 
the adjacent pixels. We apply a circular filter with the size 
of 3 pixels using an algorithm proposed by Corke (2011) to 
make the connections in the initial frame image. 3 pixels are 
minimum size of the circular filtering. Fig. 5 (B) shows the 
results after applying the circular filter.

 
 

 2.2 Extracting photovoltaic arrays

The prior candidates from the panel boundaries extraction 

Fig. 4. Left : Gray scale image and profile location (straight 
line), Right : (A) intensity values profile, (B) VFC, and (C) 

peak results using absolute values of VFC

Fig. 5. Extracted candidates of the panel boundaries; 
(A) detected peak points and (B) closed geometry of the 

detected peak points

(A) (B)
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results still need to be refined by exclusion editing with some 
obvious non-panel boundaries. In the scene under study, 
readily detectable non-panel boundaries are located in the 
background of the photovoltaic arrays. In this section, we 
describe the process of extracting photovoltaic array areas. 
Fig. 6 shows the results of the process.

The first step for extracting the photovoltaic area is 
eliminating approximate background areas by thresholding. 
The original image is converted into grayscale (Fig. 6 (A) 
and Fig. 6 (B)). Generally, when a thermal infrared camera 
captures a photovoltaic power plant while under operation, 
the panel temperature shows up higher than the background. 
Therefore, since the intensity of the panel area is higher than 
the background in the thermal infrared images, a certain 
threshold value is assigned to determine the background 
area. Here, the threshold value is set to 100, and as a result, 
it is possible to roughly eliminate the background area, 
as shown in Fig. 6 (C). The selected threshold value is 
determined by a heuristic approach. The threshold value 
selection for generating a binarized image is complex and 
should be improved. 

However, in Fig. 6 (C), an area with geothermal heat in 
the background creates noise, and hence a certain area is 
not removed with the selected threshold value. Since the 

purpose of extracting a photovoltaic array area is to exclude 
candidates of panel boundaries which are located in the 
background, noise within the photovoltaic array area or blank 
spaces in the background due to noise should be excluded. 
Consequently, an additional noise filtering is necessary to 
remove this area, and a morphological image processing 
technique, introduced by Gonzalez et al. (2004), is used to 
remove the noise.

Firstly, the hole in Fig. 6 (C) in the background area is filled 
in and the dilatation of the background area allows for the 
removal of the remaining noise (D and E in Fig. 6). Holes 
remaining after the dilatation of the background are filled up 
and background pixel erosion is applied (F and G in Fig. 6) 
again. Lastly, only areas with intensity value of 0 are selected 
to extract the background area, as shown in Fig. 6 (H). The 
approximate areas of the photovoltaic array are obtained 
using this algorithm. However, noise around the photovoltaic 
arrays is still present.

2.3 Extracting initial panel area

In Section 2.1, the candidates for panel boundaries were 
extracted. However, many candidates were located in the 
background of the photovoltaic array areas. Photovoltaic 
array areas were detected in Section 2.2. Therefore, we can 

Fig. 6. Photovoltaic arrays extraction process; (A) original image, (B) converted gray scale image, (C) background 
elimination by thresholding, (D) fill holes, (E) background pixel dilatation, (F) fill holes, (G) background pixel erosion and 

(H) the final image of the photovoltaic arrays areas

 (A) (B) (C) (D)

 (E) (F) (G) (H)
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apply the exclusion editing of the provisional candidates of 
panel boundaries using the photovoltaic areas as a blocking 
mask. For each candidate pixel, we make a pixel set of the 
corresponding line and sample coordinates. Comparing 
this set with the raster exclusion mask, if a candidate pixel 
coincides with the mask, then such pixels are eliminated.

Fig. 7 (A) shows the results of the exclusion editing. This 
image still contains noise in the lower region of the panel 
arrays. Therefore, connecting adjacent pixels to form a 
closed geometric shape is necessary, as with the last stage of 
extracting candidates for panel boundaries. Since the overall 
outline is complete, dilatation of white areas effectively 
produces an enclosed object, as shown in Fig. 7 (B). Since 
morphological image processing recognizes white areas as a 
region of interest, inversing produces images such as in Fig. 
7 (C). Objects not expressing an entire panel are eliminated 
from the region of interest and only parts that show an entire 
panel in the image are used for analysis. Fig. 7 (C) shows 
the image still containing noise, and by using the number of 
pixels that make up each object, objects consisting of less 
than 750 pixels are eliminated from the region of interest. In 
the images, the number of pixels that make up one panel is 
approximately between 800 and 2000. The threshold value of 
750 pixels is determined considering the minimum size of the 
panel size. Lastly, dilatation of objects gives the initial panel 
image, as shown in Fig. 7 (D).

2.4 Refining panel area

Examining the extracted initial panel areas in Fig. 7 (D), 
some panels contain noise, particularly in the lower part of 
the photovoltaic arrays, due to the radiation heat from the 
ground. Those above the extracted section can be refined 

using the geometric differences between the surrounding 
panels. Fig. 8 (A) presents the results of the overlapping 
extracted initial panel areas with the original image. In the 
box area of Fig. 8 (A), the over extraction of certain panels is 
shown in the lower part of the panel array. This phenomenon 
is thought to be from the noise in the lower regions of the 
panel arrays, where the boundaries between the panel and 
the ground are uncertain. Performing profile analysis on 
the panel polygons extracted in this condition may have 
resulted in error, whereby functioning panels are selected as 
malfunction panels due to the noise in the lower regions of 
the panel arrays.

In order to avoid this error, refining the extracted panel 
boundaries is necessary. Real panel and photovoltaic 
arrays are rectangular types; however, panel arrays are 
not expressed with a straight line in the images acquired 
by UAV due to lens distortion. Since it is impossible to 
refine all panel arrays with a single straight line, the lowest 
points on each side of the concerned panel boundary are 
connected to eliminate the over extracted area. Fig. 8 (B) 
presents the initial panel areas for the box area in Fig. 8 (A) 
and the concept of the refining algorithm. For example, to 
eliminate the over extracted area of panel 32 in Fig. 8 (B), 
a straight line is connected between the bottoms parts of 
the rectangular areas of panels 31 and 33. Next, the areas 
of panel 32 below the line are eliminated. The rectangular 
area is formed based on the maximum and minimum pixel 
coordinates that lie within the panel polygon. Since the over 
extraction of area only happens at the lower region of the 
panel arrays, the algorithm is only applied to this region. 
This technique can only be applied to photovoltaic power 
plants that use the same sized panels, as the boundaries of 

Fig. 7. (A) Initial panel area extraction process; exclusion editing, (B) pixel dilatation to get closed geometry, (C) inverse 
transformation of image and (D) image of initial panel areas 

                (A) (B) (C) (D)
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the panels on each side of the concerned panel are used as 
a reference for the panel area. If the exterior orientation 
parameters of the sensor are known, then a refining process 
may be applied to the lower part (south side of the panel 
array), since such radiation effects would not occur in the 
north side of the panel array due to shadows. However, the 
refining process is applied to the upper and lower part of the 
panel arrays, since the exterior orientation parameters are 
not known in this experiment.

 

Fig. 9 shows the results of applying the panel area 
extraction algorithm developed in this study, to the sample 
images in Fig. 1. The panel area extraction algorithm 
recognized individual panels within the image, as long as 
the entire panel was captured and produced ROI polygons for 
each panel area, as shown in Fig. 9.

 

3. Panel Area Extraction Algorithm 

Performance Evaluation

For performance evaluation of the algorithm, the derived 
model extracted from the algorithm developed in this study, 
and the manually digitized panel boundary (reference model) 
are compared. The performance evaluation technique 
introduced by McGlone et al. (2004) and Youn et al. (2008) 
is used for a quantitative evaluation. The evaluation method 
assesses factors such as completeness, correctness, and 
quality, to evaluate the accuracy of the area extraction. Each 
factor is calculated with the equations below.
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Here, TP (True Positive), FP (False Positive), and FN (False 
Negative) each indicate the number of pixels for each case, 
when the extracted panel area results are compared with the 
reference model.

Fig. 10 shows an example to explain the performance 
evaluation algorithm for panel extraction in detail. In each 
figure, the solid squares represent the area of the reference 
model, and the boundaries drawn with thick lines represent 
the area of the derived model. As shown in Fig. 10, TP 
shows an area in agreement between the derived model and 
reference model, FP indicates extracted areas that were not 
included in the reference model, and FN indicates areas not 
extracted despite being part of the reference model area. 
Completeness indicates the number of pixels that were 
selected among the pixels that were supposed to be selected 
as the panel area, using the reference model as a reference. 
Correctness indicates the ratio of correctly extracted pixels 
in the derived model. An indicator that represents these two 
factors together is quality, denoting the ratio of correctly 
extracted pixels out of the combined pixels from the derived 
and reference models. The assessment of this factor can 
quantitatively represent completeness and correctness of the 
algorithm for panel area extraction.

Fig. 8. (A) Overlapping extracted initial panel areas with 
original image and (B) concept of refining algorithm 

(A) (B)

Fig. 9. Panel area extraction results of sample images

(A) (B)

(C)
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Fig. 11 shows the results of the evaluation of panel area 
extraction on three sample images using this method. The 
green represents TP, blue represents FN, and red denotes 
FP. The performance evaluation results of three images 
show that FN frequently occurred in the upper region of the 
photovoltaic arrays, whereas FP frequently occurred in the 
lower region of the photovoltaic arrays. This means that the 
algorithm could not describe the panel boundary as precisely 
as the manually digitized boundary. Furthermore, it means 

that uncertainty prevailed in determining the lower boundary 
of photovoltaic arrays due to noise. Particularly in Fig. 11 
(C), FP pixels are more common compared to the other two 
images. This is thought to be a result of noise in the lower 
region of the photovoltaic arrays.

Results in Fig. 11 are quantitatively analyzed in Table 2. 
When the number of pixels used to extract panel areas is 
counted using TP, FN, and FP, areas occupied by the panels 
are different, in the order of C, B, and A. Results of A and 

Fig. 10. Example of performance evaluation of the panel area extraction algorithm
(A)TP: 139, FN: 11, FP: 11         (B)TP: 135, FN: 16, FP: 11         (C)TP: 139, FN: 11, FP: 16

Fig. 11. Results of the performance evaluation on the panel area extraction algorithm (green: TP, blue: FN, red: FP)

(A) (B) (C)

Table 2. Panel area extraction algorithm performance evaluation results

Case
TP FN FP Completeness Correctness Quality

[pixels] [%]
A 81,655 4,714 1,881 94.5 97.8 92.5
B 95,995 4,074 2,538 95.9 97.4 93.6
C 108,258 6,317 5,278 94.5 95.4 90.3

Mean 95.0 96.9 92.1
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B show over 94% of completeness, over 97% of correctness 
and over 92% of quality. However, results of C show lower 
values compared to A and B, with completeness of 94.5% and 
correctness of 95.4%. Additionally, quality is low at 90.3%, 
confirming that the increase in uncertainty in extracting 
panel areas is due to noise effects in the lower region of the 
photovoltaic arrays in image C.

 4. Conclusions

In this paper, we proposed a photovoltaic panel area 
extraction algorithm from thermal infrared images acquired 
using a UAV. Candidates for panel boundaries were extracted 
with vertical filtering, horizontal filtering, and a modified 
hierarchical histogram clustering method. Non-panel 
candidates were excluded with the results of the photovoltaic 
array detection. Initial panel boundaries were obtained via 
the application of an additional morphological algorithm. 
Finally, panel boundaries were refined with the geometry of 
surrounding panels. The algorithm developed in this study 
to extract panel areas from aerial thermal infrared images 
of photovoltaic power plants was applied to three samples 
images. As a result, the algorithm was able to produce panel 
areas at an average quality of 92.1 %. Although the panel 
boundaries were not perfectly extracted in a linear format, 
noise surrounding and within the panels were effectively 
removed, allowing individual panel recognition, which was 
required for analyzing malfunctioning panels. In order to 
apply the developed panel extraction algorithm to automated 
monitoring systems for photovoltaic power plants, functions 
that allow automatic extraction from images with varying 
resolutions and measuring heights must be added. The three 
sample images selected in this study had similar intensity 
characteristics and panel sizes. However, if image scale or 
intensity span is changed, it should still be possible to change 
the fixed variables in this algorithm (pixel discrepancies 
for the modified hierarchical histogram clustering method, 
thresholding value for extracting photovoltaic array areas 
etc.). Thus, the algorithm should be revised using images 
obtained through actual experiments. Performing image 
labeling on ROI polygon images obtained from this algorithm 
allowed the recognition of individual panels. This meant that 

based on information of each panel area, profile analysis 
on the intensities for each panel was possible. Here, it was 
anticipated that panels with hotspots would have relatively 
larger fluctuations in the profile compared to regular panels. 
Therefore, for the advancement of the automated monitoring 
system of photovoltaic power plants, an algorithm that 
detects malfunctioning panels based on the intensity or 
temperature profiles should be developed through continuous 
research. The proposed algorithm is applied to the thermal 
infrared images acquired by a UAV on the assumption that 
the exterior orientation parameters of the sensors are not 
known. Without the exterior orientation parameters, the 
threshold values for the hierarchical histogram clustering 
method and the elimination of non-panel areas are not 
automatically determined. If the parameters are determined, 
then the threshold values may be automatically determined, 
considering the size of the panels. 
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