Automatic understanding of contents in document image is a very hard problem due to involvement with mathematically challenging problems originated mainly from the over-determined system induced by document segmentation process. In both academic and industrial areas, there have been incessant and various efforts to improve core parts of content retrieval technologies by the means of separating out segmentation related issues using semi-structured document, e.g., invoice,. In this paper we proposed classification models for text lines on invoice document in which text lines were clustered into the five categories in accordance with their contents: purchase order header, invoice header, summary header, surcharge header, purchase items. Our investigation was concentrated on the performance of machine learning based models in aspect of linear-discriminant-analysis (LDA) and non-LDA (logic based). In the group of LDA, na$\"{\i}$ve baysian, k-nearest neighbor, and SVM were used, in the group of non LDA, decision tree, random forest, and boost were used. We described the details of feature vector construction and the selection processes of the model and the parameter including training and validation. We also presented the experimental results of comparison on training/classification error levels for the models employed.
본 논문에서는 모니터링 에이전트를 통한 웹 서비스 선정 과정의 자동화를 위해 프록시 클라이언트 코드를 자동 생성하는 방안을 제안한다. 본 논문의 기법은 템플릿 룰에 따라 WSDL 문서의 특정 엘리먼트의 속성 값을 가져옴으로써 서비스 사용자에게 프록시 클라이언트의 소스 코드를 제공할 수 있게 해 준다. 즉 XSLT 스크립트 파일은 클라이언트 코드 생성시 필요한 동적 호출 인터페이스 모델의 코드 골격을 제공한다. 이러한 코드 자동생성 기법은 이동 에이전트 기술과 더불어 선정 아키텍처에서의 기아 상태를 해결하기 위해 필요하다. 선정 서비스를 제외하더라도 검색 결과상의 모든 서비스들에 대한 요청 HTTP 메시지를 발생시키기 위해서는 코드 자동 생성 기법이 필요하다. 생성된 프록시 클라이언트 프로그램 코드는 검색된 서비스들에 대한 더미 메시지를 발생시킨다. 본 논문에서 제시한 클라이언트 코드 생성 방안은 자동 생성 프로그래밍 영역에서의 적용 가능성을 보여준다.
본 논문에서는 모니터링 에이전트를 통한 웹 서비스 선정 과정의 자동화를 위해 프록시 클라이언트 코드를 자동 생성하는 방안을 제안한다. 본 논문의 기법은 템플릿 룰에 따라WSDL문서의 특정 엘리먼트의 속성 값을 가져옴으로써 서비스 사용자에게 프록시 클라이언트의 소스 코드를 제공할 수 있게 해 준다. 즉 XSLT 스크립트 파일은 클라이언트 코드 생성시 필요한 동적 호출 인터페이스 모델의 코드 골격을 제공한다. 이러한 코드 자동 생성 기법은 이동 에이전트 기술과 더불어 선정 아키텍처에서의 기아 상태를 해결하기 위해 필요하다 선정 서비스를 제외하더라도 검색 결과상의 모든 서비스들에 대한 요청 HTTP 메시지를 발생시키기 위해서는 코드 자동 생성 기법이 필요하다. 생성된 프록시 클라이언트 프로그램 코드는 검색된 서비스들에 대한 더미 메시지를 발생시킨다. 본 논문에서 제시한 클라이언트 코드 생성 방안은 자동 생성 프로그래밍 영역에서의 적용 가능성을 보여준다.
When the input features are generated by factors in a classification problem, it is more meaningful to identify important factors, rather than individual features. The $F_{\infty}$-norm support vector machine(SVM) has been developed to perform automatic factor selection in classification. However, the $F_{\infty}$-norm SVM may suffer from estimation inefficiency and model selection inconsistency because it applies the same amount of shrinkage to each factor without assessing its relative importance. To overcome such a limitation, we propose the adaptive $F_{\infty}$-norm ($AF_{\infty}$-norm) SVM, which penalizes the empirical hinge loss by the sum of the adaptively weighted factor-wise $L_{\infty}$-norm penalty. The $AF_{\infty}$-norm SVM computes the weights by the 2-norm SVM estimator and can be formulated as a linear programming(LP) problem which is similar to the one of the $F_{\infty}$-norm SVM. The simulation studies show that the proposed $AF_{\infty}$-norm SVM improves upon the $F_{\infty}$-norm SVM in terms of classification accuracy and factor selection performance.
This paper aims to propose articulatory features as novel predictors for automatic pronunciation assessment of English produced by Korean learners. Based on the distinctive feature theory, where phonemes are represented as a set of articulatory/phonetic properties, we propose articulatory Goodness-Of-Pronunciation(aGOP) features in terms of the corresponding articulatory attributes, such as nasal, sonorant, anterior, etc. An English speech corpus spoken by Korean learners is used in the assessment modeling. In our system, learners' speech is forced aligned and recognized by using the acoustic and pronunciation models derived from the WSJ corpus (native North American speech) and the CMU pronouncing dictionary, respectively. In order to compute aGOP features, articulatory models are trained for the corresponding articulatory attributes. In addition to the proposed features, various features which are divided into four categories such as RATE, SEGMENT, SILENCE, and GOP are applied as a baseline. In order to enhance the assessment modeling performance and investigate the weights of the salient features, relevant features are extracted by using Best Subset Selection(BSS). The results show that the proposed model using aGOP features outperform the baseline. In addition, analysis of relevant features extracted by BSS reveals that the selected aGOP features represent the salient variations of Korean learners of English. The results are expected to be effective for automatic pronunciation error detection, as well.
During Severe emergencies which result in the case of outage of large generator units, an automatic underfrequency protection scheme can prevent the system frequency from decaying and improve the system stability. This paper presents methods and results of a study on the optimum load shedding scheme which covering as follows. 1) Detail representation of governor model 2) Determination of optimum load shedding amount 3) Selection of action time settings of UFR 4) Comparsson of load shedding programs By this study, the optimum system operating method was recommended for reliable operation of power system.
일반적으로 자동분류는 학습문서의 개수에 영향을 받는다고 알려져 있지만 실제로 학습문서의 수가 텍스트 자동분류에 어떻게 영향을 주는지 입증한 연구는 거의 없었다. 본 연구에서는 학습문서 수가 자동분류에 어떤 영향을 주는지 알아보기 위해 최근에 개발된 편차기반 분류방법을 중심으로 다른 분류 알고리즘과 비교하는데 초점을 두었다. 실험결과, 편차기반 분류모델은 학습문서의 수가 총 21개(7개 장르)인 상황에서 정확도가 0.8로 베이지안이나 지지벡터기계보다 우수하게 나타났다. 이것은 편차기반 분류모델이 장르내의 주제정보를 이용하여 학습하기 때문에 학습문서의 수가 적더라도 다른 학습방법보다 좋은 자질 선택 능력을 갖는다는 것을 입증한 것이다.
This paper presents four process models for machining processes : 1) an economical mathematical model of machining process, 2) a prediction model for surface roughness, 3) a decision model for fuzzy cutting conditions, and 4) a judgment model of machinability with automatic selection of cutting conditions. Each model was developed the economic machining, and these models were applied to theories widely studied in industrial engineering which are nonlinear programming, computer simulation, fuzzy theory, and neural networks. The results of this paper emphasize the human oriented domain of a nonlinear programming problem. From a viewpoint of the decision maker, fuzzy nonlinear programming modeling seems to be apparently more flexible, more acceptable, and more reliable for uncertain, ill-defined, and vague problem situations.
본 논문에서는 중계기 선택 기법이 적용된 증분 협력 통신의 단-대-단 성능을 분석한다. 일반적인 협력 통신은 1 phase에 송신단(S)에서 전송하는 신호를 수신단(D)이 한 번 수신하고, 2 phase에 중계기(R)로부터 S에서 전송한 신호를 재 전송받게 된다. 이러한 과정을 통해 D는 다이버시티 이득을 얻음으로써 수신 성능이 향상되지만, 두 번에 걸친 전송은 스펙트럼 효율성을 감소시킨다. 하지만 증분형 중계 기법을 적용한 협력 통신에서 D는 1 phase에 수신한 신호만으로 복호에 성공할 수 있다고 판단되면, 두 번째 전송을 생략함으로써 이러한 단점을 보완할 수 있다. 증분형 중계 기법에서 D는 ACK/NACK 메시지를 전송하는 ARQ(Automatic Repeat reQuest) 기법을 이용한다. 본 논문에서는 D가 첫 번째 시간 슬롯에 수신한 신호를 복호할 수 있는지를 판단하기 위해 임계 SNR을 이용한 ARQ 기법과 채널 부호화를 이용한 HARQ(Hybrid Automatic Repeat reQuest) 기법과 같이 두 가지 방법을 고려한 시스템에 참여하는 중계기 배치에 따른 성능을 분석하고, 중계기 배치가 성능에 미치는 영향에 대해 연구한다.
For designing working devices of construction equipment, it is necessary to consider not only sufficient working ability but also available working range. Therefore, it is important to select the appropriate pivot positions of links. This paper presents a study on selection of pivot points of links used in construction equipment. To analyze the effect of each pivot point, a design program for pivot selection is developed. A conventional pivot design method requires a complicated process because it needs to create a certain working position manually to evaluate its performance. However, the developed program includes an automatic link assembly algorithm; thus, the working device can easily be analyzed by using pivot information of links. The developed program also included a kinematic/static analysis module and characteristic analysis algorithms. Therefore, it is possible to easily analyze a working device model created through the automatic assembly algorithm, whereby users can easily analyze the effect of each link pivot point for the actual product design.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.