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Abstract

When the input features are generated by factors in a classification problem, it is more meaningful to iden-

tify important factors, rather than individual features. The F∞-norm support vector machine(SVM) has

been developed to perform automatic factor selection in classification. However, the F∞-norm SVM may

suffer from estimation inefficiency and model selection inconsistency because it applies the same amount

of shrinkage to each factor without assessing its relative importance. To overcome such a limitation, we

propose the adaptive F∞-norm (AF∞-norm) SVM, which penalizes the empirical hinge loss by the sum of

the adaptively weighted factor-wise L∞-norm penalty. The AF∞-norm SVM computes the weights by the

2-norm SVM estimator and can be formulated as a linear programming(LP) problem which is similar to the

one of the F∞-norm SVM. The simulation studies show that the proposed AF∞-norm SVM improves upon

the F∞-norm SVM in terms of classification accuracy and factor selection performance.

Keywords: Adaptive weight, F∞-norm penalty, factor selection, feature selection, support vector ma-

chine.

1. Introduction

Consider a linear binary classification problem with a training data set {(xxxi, yi)}ni=1, where xxxi ∈ Rp

is p-dimensional input features for the ith observation and yi ∈ {−1,+1} denotes its class label.

When given new input features xxx ∈ Rp, its classification is performed through the construction of a

hyperplane f(xxx) = β0+xxx
Tβββ, where β0 is an intercept and βββ ∈ Rp is a coefficient vector for the input

feature. We can assign one of two possible classes to it through the classification rule sign(f(xxx)).

The standard 2-norm SVM estimates the coefficients of the hyperplane (β̂0, β̂ββ) by maximizing the

margin between the training points for the positive and negative classes (Vapnik, 1995; Hastie et

al., 2001)

argmax
β0,βββ

1

||βββ||2
, (1.1)

subject to yi
(
β0 + xxxTi βββ

)
≥ 1− ξi, ξi ≥ 0, ∀ i, and

n∑
i=1

ξi ≤ s,
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where ξi (i = 1, . . . , n) are slack variables and s is a prespecified positive number that controls the

overlap between the two classes. It can be shown that the optimization problem (1.1) of the 2-norm

SVM can be equivalently expressed as the following ‘loss + penalty’ formulation (Vapnik, 1995;

Hastie et al., 2001) (
β̂0, β̂ββ

)L2

= argmin
β0,βββ

n∑
i=1

[
1− yi

(
β0 + xxxTi βββ

)]
+
+ λ||βββ||22, (1.2)

where the loss function (1 − yf)+ is called hinge loss and the subscript “+” indicates the positive

part (z+ = max(z, 0)). The tuning parameter λ controls the trade-off between loss and penalty,

and there is a one-to-one correspondence between s in (1.1) and λ in (1.2).

The standard 2-norm SVM has been successfully applied to various classification areas due to its

great flexibility and high level of classification accuracy; however, the 2-norm SVM classifier cannot

automatically select input features. In classification problem, the feature selection plays important

role in model building: excluding important features may produce severely biased estimation results;

however, including irrelevant features may make it difficult to interpret the resultant model and

reduce its classification accuracy. To accomplish the goal of automatic feature selection in the SVM

classifier, Zhu et al. (2003) considered the 1-norm SVM by replacing the ridge penalty in (1.2)

(Hoerl and Kennard, 1970) with the lasso penalty (Tibshirani, 1996)(
β̂0, β̂ββ

)L1

= argmin
β0,βββ

n∑
i=1

[
1− yi

(
β0 + xxxTi βββ

)]
+
+ λ||βββ||1. (1.3)

To overcome the lack of oracle property of the lasso penalty, Zou (2007) suggested the hybrid SVM

by adopting the adaptive lasso penalty (Zou, 2006)(
β̂0, β̂ββ

)H
= argmin

β0,βββ

n∑
i=1

[
1− yi

(
β0 + xxxTi βββ

)]
+
+ λ

p∑
j=1

∣∣∣β̂L2
j

∣∣∣−γ ∣∣∣βj∣∣∣, (1.4)

where the weights |β̂L2
j |

−γ are computed by the 2-norm SVM and γ > 0 is some pre-specified

number.

In this paper, we consider a classification problem in which the input features of the classifier are

generated by factors; subsequently, the model is best interpreted in terms of significant factors.

In such a situation, it is more meaningful to identify important factors, rather than individual

features. In a regression problem, some regularization methods have been developed for automatic

factor selection that include the group lasso (Yuan and Lin, 2006), the adaptive group lasso (Wang

and Leng, 2008), the penalized method using composite absolute penalties (Zhao et al., 2009),

and the adaptive sup-norm regularized quantile regression (Bang and Jhun, 2012a). In order to

automatically and simultaneously select significant factors to estimate the SVM classifier, Zou and

Yuan (2008) proposed the F∞-norm SVM that penalizes the empirical hinge loss by the sum of the

factor-wise L∞-norm penalty; however, the F∞-norm SVM may suffer from estimation inefficiency

and model selection inconsistency in the same way as the lasso and the 1-norm SVM. As a remedy,

we suggest adopting the idea of the adaptive lasso (Zou, 2006) and propose the adaptive F∞-norm

SVM, which allows different amounts of shrinkage to be imposed on different factors according to

their relative importance.

The rest of the paper is organized as follows. In Section 2, we introduce the adaptive F∞-norm

SVM and show that the adaptive F∞-norm SVM can be formulated as a linear programming(LP)
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problem. In Section 3, we evaluate the proposed method through simulation studies. Section 4

contains the concluding remarks.

2. Methodology

2.1. The adaptive F∞F∞F∞-norm SVM

Suppose that the input features of the SVM classifier are generated by G factors, that is, the features

xxxT = (x1, . . . , xp) are grouped into G factors as xxxT = (xxxT(1), . . . ,xxx
T
(G)), where xxx

T
(j) = (xj1, . . . , xjpj )

is a group of pj features for j = 1, . . . , G and
∑G

j=1 pj = p. Then the classifier can be represented

by

f(xxx) = β0 + xxxTβββ = β0 +

G∑
j=1

xxxT(j)βββ(j), (2.1)

where βββ(j) = (βj1, . . . , βjpj )
T ∈ Rpj is the coefficient vector associated with the jth factor. In such

a situation, it is more reasonable to automatically and simultaneously select significant factors,

rather than individual derived features. To accomplish the goal of automatic factor selection in the

SVM classifier, Zou and Yuan (2008) proposed the F∞-norm SVM, which penalizes the empirical

hinge loss by the sum of the factor-wise L∞-norm penalty(
β̂0, β̂ββ

)F∞
= argmin

β0,βββ

n∑
i=1

[
1− yi

(
β0 +

G∑
j=1

xxxTi,(j)βββ(j)

)]
+

+ λ

G∑
j=1

∣∣∣∣∣∣βββ(j)

∣∣∣∣∣∣
∞
, (2.2)

where the infinite norm is defined by∣∣∣∣∣∣βββ(j)

∣∣∣∣∣∣
∞

= max
{
|βj1| , . . . , |βjl| , . . . ,

∣∣βjpj ∣∣} , j = 1, . . . , G. (2.3)

Owing to the nature of the L∞-norm, the F∞-norm SVM is able to simultaneously select significant

features in a grouped manner, hence it is a more appropriate tool for factor selection than the

1-norm SVM in (1.3).

In the F∞-norm SVM (2.2), the same tuning parameter λ is used for each factor-wise L∞-norm

penalty; subsequently, the same amount of shrinkage is imposed on each factor without assessing its

relative importance. In this paper, we suggest that different factors should be penalized differently

according to their relative importance. In a typical linear regression setting, some researchers have

suggested that an excessive penalty applied to important variables can degrade estimation efficiency

and may influence model selection consistency (Fan and Li, 2001; Leng et al., 2006; Yuan and Lin,

2007; Zou, 2006). Ideally, small penalties should be used on the significant factors that we want

to retain in the model; however, large penalties should be imposed on irrelevant factors in order to

eliminate them from the final SVM classifier.

In order to further improve upon the F∞-norm SVM, we adopt the idea of the adaptive lasso from

Zou (2006). Suppose that we first fit the 2-norm SVM classifier using all available input features.

Then we suggest using the 2-norm SVM estimator βββL2
(j) (j = 1, . . . , G) to construct the adaptively

weighted F∞-norm penalty and propose the following adaptive F∞-norm (AF∞-norm) SVM

(
β̂0, β̂ββ

)AF∞
= argmin

β0,βββ

n∑
i=1

[
1− yi

(
β0 +

G∑
j=1

xxxTi,(j)βββ(j)

)]
+

+ λ

G∑
j=1

∣∣∣∣∣∣β̂ββL2

(j)

∣∣∣∣∣∣−γ

∞

∣∣∣∣∣∣βββ(j)

∣∣∣∣∣∣
∞
. (2.4)
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By using the solution to (2.4), the fitted AF∞-norm SVM classifier is f̂(xxxi) = β̂AF∞
0 +

∑G
j=1 xxx

T
i,(j)

β̂ββ
AF∞
(j) , and the classification rule is sign(f̂(xxx)). The factor-wise adaptively weighted L∞-norm

penalty in (2.4) has been considered as the common variable selection in multiple quantile regression

(Bang and Jhun, 2012b) as well as in the multicategory SVM (Zhang et al., 2008). It is interesting

to note that in the context of quantile regression, Bang and Jhun (2012a) also suggested using

a penalty term similar to the one of (2.4) to automatically select significant factors. When each

individual feature is considered as a factor, that is, p1 = · · · = pG = 1, the AF∞-norm SVM reduces

to the hybrid SVM described in (1.4). Therefore, the AF∞-norm SVM is a generalization of the

hybrid SVM; the AF∞-norm SVM has the capability to automate factor selection in the model

fitting, whereas the hybrid SVM contains no information on the factors.

2.2. Computing algorithm

In this section, we show that the optimization problem (2.4) can be formulated as a linear program-

ming(LP) problem. To derive the LP formulation of the AF∞-norm SVM, we introduce n slack

variables such that

ξi =

[
1− yi

(
β0 +

G∑
j=1

xxxTi,(j)βββ(j)

)]
+

, i = 1, 2, . . . , n. (2.5)

With such notation, the optimization problem (2.4) can be expressed as

argmin
β0,βββ

n∑
i=1

ξi + λ

G∑
j=1

∣∣∣∣∣∣β̂ββL2

(j)

∣∣∣∣∣∣−γ

∞

∣∣∣∣∣∣βββ(j)

∣∣∣∣∣∣
∞
. (2.6)

subject to yi

(
β0 +

G∑
j=1

xxxTi,(j)βββ(j)

)
≥ 1− ξi and ξi ≥ 0, ∀ i.

To further simplify the optimization problem (2.6), let the new variable Mj = ||βββ(j)||∞ for j =

1, 2, . . . , G and write β0 as β+
0 − β−

0 and βββ(j) as βββ+
(j) − βββ

−
(j), where β+

0 ≥ 0, β−
0 ≥ 0, βββ+

(j) =

(β+
j1, . . . , β

+
jpj

)T ≥ 000, and βββ−
(j) = (β−

j1, . . . , β
−
jpj

)T ≥ 000. Then the adaptively weighted F∞-norm

penalty term λ
∑G

j=1 ||β̂ββ
L2

(j)||−γ
∞ ||βββ(j)||∞. can be linearly reformulated with some linear inequality

constraints. By using these variables and notations, the optimization problem (2.4) and (2.6) can

be equivalently expressed as

argmin
β0,βββ

n∑
i=1

ξi + λ

G∑
j=1

∣∣∣∣∣∣β̂ββL2

(j)

∣∣∣∣∣∣−γ

∞
Mj (2.7)

subject to yi

(
β+
0 − β

−
0 +

G∑
j=1

xxxTi,(j)

(
βββ+

(j) − βββ
−
(j)

))
≥ 1− ξi and ξi ≥ 0, ∀ i,

Mj ≥ β+
jl + β−

jl , ∀ j, l,
β+
0 ≥ 0, β−

0 ≥ 0 and β+
jl ≥ 0, β−

jl ≥ 0, ∀ j, l.

This LP formulation of the AF∞-norm SVM is similar to the one of the F∞-norm SVM, but the key

difference between these two LP formations is that the AF∞-norm SVM uses the adaptive weights

for penalizing different factors according to their relative importance in the objective function (2.7);
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however, the F∞-norm SVM uses the equal weight for each factor. In the present study, we used

the lpSolve package provided in R to implement the above LP problem and our R code is available

for interested readers upon request.

3. Simulation Studies

In this section, simulation studies were conducted to evaluate the finite sample performance of the

proposed AF∞-norm SVM method. For comparison purpose, we also included the 2-norm SVM, the

1-norm SVM, the hybrid SVM, and the F∞-norm SVM in the simulation. Two simulated models

were considered, which are similar to those in Zou and Yuan (2008). For each of the simulated

models, we generated 100 training observations, along with 100 independent observations for the

validation set. The models were fitted on training data only, and the validation set was used to

select the tuning parameter λ. To evaluate the classification accuracy for each method, we also

independently generated 10,000 observations as a test set. The model selection performance was

measured by the number of correctly selected factors and features(NC), the number of incorrectly

selected factors and features(NIC), and the number of times that the true model is correctly iden-

tified. To assess the sampling variability, this procedure was repeated 100 times independently. In

the tables, the classification error, NC, and NIC were reported on averages over 100 runs. The

numbers given in parentheses are the standard deviations of the classification errors.

3.1. Example 1

In this example, we first generated 8 factors z1, . . . , z8 from the standard normal distribution with

Cov(zj , zj′) = 0.5|j−j′|. In addition, 40 random variables w1, . . . , w40 were independently generated

from the standard normal distribution. Then the 40 covariates were obtained by

x1l = 2−
1
2 (z1 + wl), for l = 1, . . . , 6, x2l = 2−

1
2 (z2 + wl+6), for l = 1, . . . , 4,

x3l = 2−
1
2 (z3 + wl+10), for l = 1, . . . , 6, x4l = 2−

1
2 (z4 + wl+16), for l = 1, . . . , 5,

x5l = 2−
1
2 (z5 + wl+21), for l = 1, . . . , 4, x6l = 2−

1
2 (z6 + wl+25), for l = 1, . . . , 5,

x7l = 2−
1
2 (z7 + wl+30), for l = 1, . . . , 4, x8l = 2−

1
2 (z8 + wl+34), for l = 1, . . . , 6.

The binary response y was generated by a logistic model with P (y = 1) = exp(f(xxx))/(1+exp(f(xxx)))

and P (y = −1) = 1− P (y = 1), where the true hyperplane is given by

f(xxx) = 1.2x11 − 0.8x12 + 1.6x13 + 1.5x14 − 3x15 + x16 + x21 − 0.9x22 − 1.1x23 − 1.3x24

+ 1.5x61 + 2x62 − x63 − 2.5x64 + 3x65.

This model has 3 important factors and 15 important covariates. Table 3.1 summarizes the per-

formance of each method for the above simulated model. As expected, the adaptively regularized

methods (i.e., the hybrid-SVM and the AF∞-norm SVM) were superior to their non-adaptive

counterparts in terms of classification error and model selection performance. We can see that the

number of incorrectly selected factors for the proposed AF∞-norm SVM is smaller than that of the

Hybrid SVM (while number of incorrectly selected variables for the Hybrid SVM is smaller than

that of the proposed AF∞-norm SVM); however, the proposed AF∞-norm SVM outperformed the

others in terms of classification error.



834 Sungwan Bang, Myoungshic Jhun

Table 3.1. Simulation results for Example 1

Method Test error
No. of factors selected No. of variables selected No. of times

NC NIC NC NIC for true model

2-norm SVM 0.2034 (0.0187) 3.00 5.00 15.00 25.00 0

1-norm SVM 0.1857 (0.0203) 3.00 4.78 13.38 13.40 0

Hybrid SVM 0.1815 (0.0203) 3.00 3.93 12.18 7.46 0

F∞-norm SVM 0.1696 (0.0161) 3.00 4.17 15.00 21.13 0

AF∞-norm SVM 0.1561 (0.0168) 2.99 2.86 14.96 14.90 6

The numbers in parentheses are standard deviations.

Table 3.2. Simulation results for Example 2

Method Test error
No. of factors selected No. of variables selected No. of times

NC NIC NC NIC for true model

2-norm SVM 0.1399 (0.0114) 2.00 13.00 20.00 40.00 0

1-norm SVM 0.1471 (0.0110) 2.00 3.19 9.09 4.09 0

Hybrid SVM 0.1494 (0.0113) 2.00 2.96 8.03 3.48 0

F∞-norm SVM 0.1262 (0.0105) 2.00 1.30 20.00 13.00 24

AF∞-norm SVM 0.1239 (0.0090) 2.99 0.42 20.00 4.20 66

The numbers in parentheses are standard deviations.

3.2. Example 2

In this example, 5 random variables z1, . . . , z5 were independently generated from a standard normal

distribution. In addition, 60 standard normal variables {εj}60j=1 were generated. Then the 60

covariates were obtained by

x1l = z1 + εl, for l = 1, . . . , 10, x2l = z2 + εl+10, for l = 1, . . . , 10,

x3l = z3 + εl+20, for l = 1, . . . , 10, x4l = z4 + εl+30, for l = 1, . . . , 10,

x5l = z5 + εl+40, for l = 1, . . . , 10, xj1 = εj , for j = 6, 7, . . . , 15.

The binary response y was generated by a logistic model with P (y = 1) = exp(f(xxx))/(1+exp(f(xxx)))

and P (y = −1) = 1− P (y = 1), where the true hyperplane is given by

f(xxx) = 1 + 4z1 + z2.

This model has 2 important factors and 20 important covariates. Table 3.2 reports the performance

of each method. In terms of classification error and factor selection performance, the factor-wise

penalized methods (i.e., the F∞-norm SVM and the AF∞-norm SVM) worked better than their

corresponding individual penalized methods. We can see that the factor-wise penalized methods

always selected all important features; however the individual penalized methods (i.e., the 1-norm

SVM and the hybrid SVM) tended to eliminate some important features. In particular, it is shown

in Table 3.2 that the AF∞-norm SVM performed better than the F∞-norm SVM.

4. Concluding Remarks

In this paper, we have proposed the AF∞-norm SVM that performs simultaneous classification

and factor selection. The AF∞-norm SVM consists of two stages. At the first stage, we use the

coefficients of the 2-norm SVM classifier to construct the factor-wise adaptively weighted L∞-norm

penalty. Then we solve the adaptively weighted F∞-norm SVM by using the standard LP technique.
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Simulation results show that the proposed the AF∞-norm SVM outperforms the F∞-norm SVM as

well as the individual penalized methods (i.e., the 1-norm SVM and the hybrid SVM) in terms of

classification accuracy and model selection performance.

To incorporate the factor information into regularized model fitting, we can also use the group lasso

penalty (Yuan and Lin, 2006; Wang and Leng, 2008) as an alternative to the L∞-norm penalty.

Considering computational efficiency, we favor the factor-wise L∞-norm penalty because the opti-

mization problem using the group lasso penalty is formulated as a nonlinear programming(NLP)

problem. In a simulation study, we know the group information of input features, but this is not

available in applications of real data. In such situations, we can employ a clustering method to clus-

ter the features into several groups such as the hierarchical clustering and the partitioning around

medoids(PAM) algorithm (Kaufman and Rousseeuw, 1990).
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