IEIE Transactions on Smart Processing and Computing
/
v.6
no.1
/
pp.21-26
/
2017
In this paper, we suggest an automated sleep scoring method using machine learning algorithms on accelerometer data from a wristband device. For an experiment, 36 subjects slept for about eight hours while polysomnography (PSG) data and accelerometer data were simultaneously recorded. After the experiments, the recorded signals from the subjects were preprocessed, and significant features for sleep stages were extracted. The extracted features were classified into each sleep stage using five machine learning algorithms. For validation of our approach, the obtained results were compared with PSG scoring results evaluated by sleep clinicians. Both accuracy and specificity yielded over 90 percent, and sensitivity was between 50 and 80 percent. In order to investigate the relevance between features and PSG scoring results, information gains were calculated. As a result, the features that had the lowest and highest information gain were skewness and band energy, respectively. In conclusion, the sleep stages were classified using the top 10 significant features with high information gain.
In this paper, we introduce a new technology to extract the unique features from an iris image, which uses scale-space filtering. Resulting iris code can be used to develop a system for rapid and automatic identification of persons, with high reliability and confidence levels. First, an iris part is separated from the whole image. Then the radius and center of the iris are obtained. Once the regions that have a high possibility of being noise are discriminated, the features presented in the highly detailed pattern is then extracted from the iris image. Scale-space filtering technique is applied for feature extraction.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.3
no.1
/
pp.84-95
/
2009
The ubiquitous smart home is the home of the future, which exploits context information from both the human and the home environment, providing an automatic home service for the human. Human location and motion are the most important contexts in the ubiquitous smart home. In this paper, we present a real-time human tracker that predicts human location and motion for the ubiquitous smart home. The system uses four network cameras for real-time human tracking. This paper explains the architecture of the real-time human tracker, and proposes an algorithm for predicting human location and motion. To detect human location, three kinds of images are used: $IMAGE_1$ - empty room image, $IMAGE_2$ - image of furniture and home appliances, $IMAGE_3$ - image of $IMAGE_2$ and the human. The real-time human tracker decides which specific furniture or home appliance the human is associated with, via analysis of three images, and predicts human motion using a support vector machine (SVM). The performance experiment of the human's location, which uses three images, lasted an average of 0.037 seconds. The SVM feature of human motion recognition is decided from the pixel number by the array line of the moving object. We evaluated each motion 1,000 times. The average accuracy of all types of motion was 86.5%.
Objective: The goal of this thesis is to design the interaction structure and framework of system to recognize sign language. Background: The sign language of meaningful individual gestures is combined to construct a sentence, so it is difficult to interpret and recognize the meaning of hand gesture for system, because of the sequence of continuous gestures. This being so, in order to interpret the meaning of individual gesture correctly, the interaction structure and framework are needed so that they can segment the indication of individual gesture. Method: We analyze 700 sign language words to structuralize the sign language gesture interaction. First of all, we analyze the transformational patterns of the hand gesture. Second, we analyze the movement of the transformational patterns of the hand gesture. Third, we analyze the type of other gestures except hands. Based on this, we design a framework for sign language interaction. Results: We elicited 8 patterns of hand gesture on the basis of the fact on whether the gesture has a change from starting point to ending point. And then, we analyzed the hand movement based on 3 elements: patterns of movement, direction, and whether hand movement is repeating or not. Moreover, we defined 11 movements of other gestures except hands and classified 8 types of interaction. The framework for sign language interaction, which was designed based on this mentioned above, applies to more than 700 individual gestures of the sign language, and can be classified as an individual gesture in spite of situation which has continuous gestures. Conclusion: This study has structuralized in 3 aspects defined to analyze the transformational patterns of the starting point and the ending point of hand shape, hand movement, and other gestures except hands for sign language interaction. Based on this, we designed the framework that can recognize the individual gestures and interpret the meaning more accurately, when meaningful individual gesture is input sequence of continuous gestures. Application: When we develop the system of sign language recognition, we can apply interaction framework to it. Structuralized gesture can be used for using database of sign language, inventing an automatic recognition system, and studying on the action gestures in other areas.
Monitoring technology of machining has a long history since unmanned machining was introduced. Despite the long history, many researchers have presented new approaches continuously in this area. Sound based machine fault diagnosis is the process consisting of detecting automatically the damages that affect the machines by analyzing the sounds they produce during their operating time. The collected sound is corrupted by the surrounding work environment. Therefore, the most important part of the diagnosis is to find hidden elements inside the data that can represent the error pattern. This paper presents a feature extraction methodology that combines various digital signal processing and pattern recognition methods for the analysis of the sounds produced by tools. The magnitude spectrum of the sound is extracted using the Fourier analysis and the band-pass filter is applied to further characterize the data. Statistical functions are also used as input to the nonlinear classifier for the final response. The results prove that the proposed feature extraction method accurately captures the hidden patterns of the sound generated by the tool, unlike the conventional features. Therefore, it is shown that the proposed method can be applied to a sound based automatic diagnosis system.
Kim, Hyun-Sook;Kim, Kwang-Yong;Nam, Sung-Hyun;Hwang, Chong-Sun;Yang, Young-Kyu
Journal of KIISE:Software and Applications
/
v.27
no.7
/
pp.712-722
/
2000
In this paper, we suggest and test a classification technique of offence pattern from group formation to automatically index highlights of soccer games. A BP (Back-propagation) neural nets technique was applied to the information of the position of both the player and the ball on a ground, and the distance between the player and the ball to identify the group formation in space and time. The real soccer game scenes including '98 France World Cup were used to extract 297 video clips of various types of offence patterns; Left Running 60, Right Running 74, Center Running 72, Corner-kick 39 and Free-kick 52. The results are as follows: Left Running comes to 91.7%, Right Running 100%. Center Running 87.5%, Corner-kick 97.4% and Free-kick 75%, and these showed quite a satisfactory rate of recognition.
Journal of rehabilitation welfare engineering & assistive technology
/
v.11
no.1
/
pp.81-89
/
2017
In this paper, we propose a gait pattern recognition method for intelligent prosthesis that enables walking in various environments of femoral amputees. The proposed gait mode changing method is a single sensor based algorithm which can discriminate gait surface and gait phase using only strain gauges sensor, and it is designed to simplify the algorithm based on multiple sensors of existing intelligent prosthesis and to reduce cost of prosthesis system. For the recognition algorithm, we analyzed characteristics of the ground reaction force generated during gait of normal person and defined gait step segmentation and gait detection condition, A gait analyzer was constructed for the gait experiment in the environment similar to the femoral amputee. The validity of the paper was verified through the defined detection conditions and fabricated instruments. The accuracy of the algorithm based on the single sensor was 95%. Based on the proposed single sensor-based algorithm, it is considered that the intelligent prosthesis system can be made inexpensive, and the user can directly grasp the state of the walking surface and shift the walking mode. It is confirmed that it is possible to change the automatic walking mode to switch the walking mode that is suitable for the walking mode.
The ubiquitous smart home is the home of the future that takes advantage of context information from the human and the home environment and provides an automatic home service for the human. Human location and motion are the most important contexts in the ubiquitous smart home. We present a real-time human tracker that predicts human location and motion for the ubiquitous smart home. We used four network cameras for real-time human tracking. This paper explains the real-time human tracker's architecture, and presents an algorithm with the details of two functions (prediction of human location and motion) in the real-time human tracker. The human location uses three kinds of background images (IMAGE1: empty room image, IMAGE2: image with furniture and home appliances in the home, IMAGE3: image with IMAGE2 and the human). The real-time human tracker decides whether the human is included with which furniture (or home appliance) through an analysis of three images, and predicts human motion using a support vector machine. A performance experiment of the human's location, which uses three images, took an average of 0.037 seconds. The SVM's feature of human's motion recognition is decided from pixel number by array line of the moving object. We evaluated each motion 1000 times. The average accuracy of all the motions was found to be 86.5%.
Park, Aa-Ron;Baek, Seong-Joon;Yang, Bing-Xin;Na, Seung-You
The Journal of the Korea Contents Association
/
v.9
no.2
/
pp.432-438
/
2009
In this paper, we evaluated the performance of the automatic classifier applied for the discrimination of acute alcoholic liver injury and chronic liver fibrosis. The classifier uses the discriminant peaks of the preprocessed Raman spectrum as a feature set. In preprocessing step, we subtract baseline and apply Savitzky-Golay smoothing filter which is known to be useful at preserving peaks. After identifying discriminant peaks from the spectra, we carried out the classification experiments using MAP and neural networks. According to the experimental results, the classifier shows the promising results to diagnosis alcoholic liver injury and chronic liver fibrosis. Classification results over 80% means that the peaks used as a feature set is useful for diagnosing liver disease.
This research enables the user to have access to the desired service which is on the multi-platform display device by establishment customized Digital Signage System using the SaaS method. This system is significantly favorable due to the following points: the expandibility and portability is outstanding compared with the existing signage system, establishment expenses may be reduced because the platform can be established in various configurations independently, maintenance and management, and the strong point of the system is that costs can be reduced due to the fact that the electric power can be controlled according to environmental situations. Various researches should be conducted simultaneously such as researches on automatic pattern recognition technologies which recognizes the sex, age, location among other data of the user and various methods of image processing for the production of contents to elaborate lively contents to provide diverse experience and enjoyable configurations for the future generation.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.