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Abstract: In this paper, we suggest an automated sleep scoring method using machine learning 
algorithms on accelerometer data from a wristband device. For an experiment, 36 subjects slept for 
about eight hours while polysomnography (PSG) data and accelerometer data were simultaneously 
recorded. After the experiments, the recorded signals from the subjects were preprocessed, and 
significant features for sleep stages were extracted. The extracted features were classified into each 
sleep stage using five machine learning algorithms. For validation of our approach, the obtained 
results were compared with PSG scoring results evaluated by sleep clinicians. Both accuracy and 
specificity yielded over 90 percent, and sensitivity was between 50 and 80 percent. In order to 
investigate the relevance between features and PSG scoring results, information gains were 
calculated. As a result, the features that had the lowest and highest information gain were skewness 
and band energy, respectively. In conclusion, the sleep stages were classified using the top 10 
significant features with high information gain.     
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1. Introduction 

Polysomnography (PSG) is one of the most accurate 
ways to diagnose sleep disorders. It includes 
electroencephalogram (EEG), electrooculogram (EOG), 
electromyogram (EMG), electrocardiogram (ECG), and 
many other physiological signals. However, there are some 
disadvantages with PSG. First, it is difficult to take a PSG 
test due to the complexity of the procedure and its high 
cost. Additionally, patients can feel stressed and 
uncomfortable owing to the unfamiliar environment of 
sleep laboratories and hospitals, which can affect the 
physiological signals. Although there have been studies 
into replacing PSG [1], these studies were not suitable for 
completely replacing it, since the complexity of the 
procedures were still problematic. In this study, we 
propose a method using a wearable wristband to score 
sleep stages automatically, which is a comfortable way for 
patients to undergo testing in their own homes. 
Furthermore, it is not expensive to use an accelerometer 
sensor to estimate sleep stages.  

2. Methods 

Fig. 1 shows the procedure of our proposed method to 
score sleep stages using an accelerometer sensor. First, 
PSG data from the subjects were obtained while 
simultaneously recording accelerometer data from the 
wrist. Then, we preprocessed the accelerometer data using 
a fifth-order Butterworth filter to remove movement 
artifacts [2, 3]. The preprocessed signals were classified 
into four sleep stages using five different machine learning 
algorithms. Next, the information gains were calculated to 
choose the optimal number of features for the 
classification of sleep stages, and 10 significant features 
with high information gain were selected.  

2.1 Experiment 
Thirty-six subjects took part in the experiment, 

sleeping for about eight hours in a sleep laboratory, where 
all subjects underwent standard PSG. Signals including 
EEG, EOG, bi-lateral tibials EMG, ECG, airflow (nasal 
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thermistor), chest and abdominal excursion (piezo bands), 
and oxyhemoglobin saturation were recorded. Additionally, 
movement data from the subjects were recorded using a 
three-axis accelerometer sensor placed on the non-
dominant wrist. The accelerometer data were recorded 
during the eight-hour sleep with 100 sampling frequencies 
sufficient to measure the movement of the subjects during 
sleep. Table 1 shows the average and standard deviation 
for the sleep durations across all subjects, including BMI, 
height, and weight.   

2.2 Dataset 
As mentioned earlier, accelerometer data at the N1 and 

N2 stages were similar in nature and merged into a light 
stage, while the N3 stage was considered a deep sleep 
stage [4]. Hence, four sleep stages (wake, rapid eye 
movement [REM], light, and deep sleep) were estimated in 
the experiment. Fig. 2 illustrates the distribution of each 
sleep stage epoch number. The average number of epochs 
of the wake, REM, and deep sleep stages were about 100. 
In addition, the average epochs of the light sleep stage 

were about 600.  

2.3 Preprocessing 
In order to remove movement artifacts, the 

accelerometer signals from subjects were filtered using a 
fifth-order Butterworth filter, designed with MATLAB 
R2014a. The cut-off frequency of the bandpass filter was 
from 0.25 Hz to 3 Hz. 

2.4 Feature Extraction 
The preprocessed data were collected with 30-second 

epochs for comparison with the PSG result, which was 
used as ground truth. Then, the data were changed into 
features. Table 2 shows a detailed description of each 
feature. There were 40 features in our study, since each 
feature was extracted for the x-, y-, and z-axis, and the 

 

Fig. 1. The procedure of the proposed method. 
 

Table 1. The sleep information of all subjects, including 
sleep duration, BMI, height, and weight. 

 Time (h) BMI Height  Weight 
Average 8.353889 22.63472 172.4605 68.15789 
Std. Dev. 0.56882 2.674178 8.779877 13.27164 
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Fig. 2. The distribution in the number of epochs in each 
sleep stage. While the average number in wake, REM, 
and deep sleep stages was 100, the average number in 
the light stage was over 550. 

 
Table 2. The description of features. Each feature was 
calculated for x-axis, y-axis, z-axis, and the square root 
of the three axes, yielding 40 features in total. 
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intensity of three axes. 

2.5 Classification 
Accelerometer data were classified into the sleep stages 

using five supervised machine learning algorithms, that is, 
KStar, bagging, random committee, random subspace, and 
random forest. Weka tools were utilized to implement the 
algorithms [4]. For validation of performance, 10-fold 
cross validation was applied to the separation results 
among the sleep stages. 

The KStar classifier is an instance-based classifier. The 
class of a test instance is based upon the class of those 
training instances determined by some similarity function. 
It is different from other instance-based classifiers since it 
uses an entropy-based distance function [5]. 

Bagging is the ensemble classifier that consists of 
many classifiers traded by different training subsets. The 
results are decided by majority vote of the classifiers [6].  

Random committee is an ensemble classifier that 
consists of many base classifiers. Each base classifier is 
constructed using a different random number seed. The 
final prediction results are a simple average of the results 
estimated by each base classifier [7]. 

Random subspace (RS) is an attribute bagging method 
that can avoid overfitting with a small amount of data. This 
machine learning algorithm consists of weak classifiers 
that compensate for the small size of the data. It can 
improve performance by using a random sample of 
features, instead of using all the features. Random 
subspace is different from other ensemble classifiers, such 
as Bagging, since it uses random subsets of the feature 
space [8]. 

Random forest (RF) is a supervised machine learning 
algorithm consisting of many decision trees. Each decision 
tree is made by bootstrap samples of the same dataset, and 
it uses a random variable selection. The results are decided 
by majority vote of decision trees that comprise the 
random forest [9].       

2.6 Feature study 
We calculated the information gain of each feature to 

look into the optimal features for automatic sleep scoring. 
Information gain is defined as follows [10]: 
 

 
( )

( )
,

( | )

InfoGain Class Feature

H Class H Class Feature= −
 (1) 

 
Based on investigations of the information gain, the 

band energy (BE) of the x-axis had the largest information 
gain, yielding 0.32. More than half of the features had 
information gain over 0.2. The feature with the lowest 
information gain was skewness of the y-axis: 0.05. Fig. 3 
illustrates the information gain of each feature. 

Sleep stages were classified by increasing the number 
of the features based on high information gain to 
investigate the optimal number of sleep-related features. 
As can be seen in Fig. 4 (classification performance 
corresponding to the number of features), around 10 
significant features could yield meaningful performance.  

3. Result 

The following performance indicators (accuracy, 
sensitivity, and specificity) were computed for the 
assessment of the classification results.  
 

 Accuracy TP TN
TP FP TN FN

+
=

+ + +
 (2) 

 Sensitivity TP
TP FN

=
+

 (3) 

 Specificity TN
TN FP

=
+

 (4) 

 
where TP, TN, FP, and FN represent true positive, true 
negative, false positive, and false negative, respectively. 
PSG estimation results were used as ground truth. Fig. 5 
shows the accuracies of sleep scoring results using 
machine learning algorithms. Overall, the average 
accuracies of wake, REM, and deep sleep stages were 
greater than 90%, and accuracy of the light stage was over 
80%.  

Fig. 6 displays the sensitivities of the sleep scoring 
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Fig. 3. The information gain of each feature. 
 

5 10 15 20 25 30 35 4078

80

82

84

86

88

90
Wake Stage

Number of Feature

A
cc

ur
ac

y(
%

)

 

 

KStar
Bagging
RandomCommittee
RandomSubSpace
RandomForest

5 10 15 20 25 30 35 4070

75

80

85

90
REM Stage

Number of Feature

A
cc

ur
ac

y(
%

)

 

 

KStar
Bagging
RandomCommittee
RandomSubSpace
RandomForest

5 10 15 20 25 30 35 4055

60

65

70

75

80

85
Light Stage

Number of Feature

Ac
cu

ra
cy

(%
)

 

 

KStar
Bagging
RandomCommittee
RandomSubSpace
RandomForest

5 10 15 20 25 30 35 4080

82

84

86

88

90

92
Deep Stage

Number of Feature
Ac

cu
ra

cy
(%

)

 

 

KStar
Bagging
RandomCommittee
RandomSubSpace
RandomForest

Fig. 4. The average accuracies of the 36 subjects 
depending on features with high information gain. 
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results using machine learning algorithms. Overall, the 
average sensitivity for the light and REM stages was 
greater than 90%, and for the deep sleep and wake stages, 
around 50%. The small number of epochs in the wake and 
deep sleep stages caused relatively lower sensitivity, 
compared to the other stages. 

Fig. 7 shows the specificity in the sleep scoring results. 
Overall, the average specificity for REM, deep sleep, and 
wake stages was greater than 90% and specificity of the 
light stage was around 70%. The larger number of epochs 
for the light stage caused relatively lower specificity, 
compared to the other stages. 

We classified the sleep stages using the top 10 features 
with high information gain for the optimal number of 
features in order to estimate the sleep stages. Fig. 8 
illustrates the accuracy of the sleep scoring results using 
the top 10 significant features with high information gain. 
The results were similar to previous results. 

The sensitivities of the sleep estimation results using 
the top 10 features with high information gain are shown 

in Fig. 9. The results are similar to the previous results 
with all 40 features. 

Fig. 10 shows the specificities of the sleep estimation 
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Fig. 5. Classification accuracies of four sleep stages
across the 36 subjects using five classification
algorithms.  
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Fig. 6. Classification sensitivities of the four sleep
stages across the 36 subjects using five machine
learning algorithms. 
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Fig. 7. Classification specificities of the four sleep 
stages across the 36 subjects using five classification 
algorithms.  

 

60

70

80

90

100

KStar Bagging RC RSS RF
Classifiers

Light Stage

A
cc

ur
ac

y(
%

)

60

70

80

90

100

KStar Bagging RC RSS RF
Classifiers

REM Stage

A
cc

ur
ac

y(
%

)
60

70

80

90

100

KStar Bagging RC RSS RF
Classifiers

Deep Stage

A
cc

ur
ac

y(
%

)

60

70

80

90

100

KStar Bagging RC RSS RF
Classifiers

Wake Stage
A

cc
ur

ac
y(

%
)

Fig. 8. The accuracies of the four stages using the 10 
significant features with high information gain. 
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Fig. 9. The sensitivities of the four sleep stages using 
10 significant features with high information gain. 
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results using the top 10 features with high information gain. 
The results are similar to the previous results with all 40 
features. 

For rigorous validation of the results using only 10 
significant features, the correlation between two previously 
referred to methods, using all 40 features and 10 
significant features only, was calculated. Fig. 11 displays 
the correlations between two methods corresponding to the 
classifiers. Overall correlations between the two methods 
yielded over 0.9.  

4. Conclusion 

The results presented in this paper show that our 
proposed method is efficient at scoring sleep stages 
automatically. While PSG measurements include EEG, 
EOG, EMG, ECG, and various biomedical signals, our 
method measures only wrist movement using an 
accelerometer sensor. Furthermore, our approach could be 
more natural and convenient for subjects who undergo a 
sleep test, compared to conventional PSG recording owing 
to the possibility of using it in the homes of the subjects, 
which would not cause stress or discomfort. The 

information gain of each feature was computed for optimal 
feature selection, and 10 significant features were selected 
for estimation of sleep stages. The small number of 
features produced performance similar to the results from 
using all 40 features, which was validated by correlation 
results between the two methods. 
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