• 제목/요약/키워드: Automatic Manual Transmission

검색결과 53건 처리시간 0.024초

동력계 시험을 이용한 자동화 수동변속차량의 클러치 토크 분석 (Analysis on the Clutch Torque of Automated Manual Transmission Vehicle during Dynamometer Test)

  • 최우석;임원식;오덕수;박성천
    • 한국생산제조학회지
    • /
    • 제24권3호
    • /
    • pp.287-293
    • /
    • 2015
  • With the rise in oil prices and ongoing concerns about environment, there is an increased amount of interest in automated manual transmission (AMT) vehicles. Torque control in an AMT vehicle is attained by controlling the displacement of the dry-type clutch's actuator. To provide good ride comfort akin to that of an automatic transmission vehicle, the clutch control is vital to an AMT vehicle. In this study, a method of obtaining the clutch torque from a dynamometer test is devised. This method is able to identify the relationship between the displacement of the clutch actuator and the clutch torque. A simulator for estimating the performance of an AMT vehicle is developed using MATLAB Simulink. The results obtained from both the vehicle and simulation exhibit a similar trend.

자동차용 클러치 전자 제어 모듈 개발에 관한 연구 (Development of Electronic Control Module for Automobile Clutch)

  • 나원식;김상현;문송철;이재하
    • 한국항행학회논문지
    • /
    • 제12권3호
    • /
    • pp.208-214
    • /
    • 2008
  • 자동차 산업의 발전에 따라 보다 편리한 기능의 자동차 부품 기술 개발이 꾸준히 진행되어 왔으나, 운송 수단 발명 초기에 개발되었던 수동 클러치 방식은 수많은 연구와 개발자들의 노력에도 불구하고 아직 오토미션 수준의 초기 단계에 머물러 있다고 볼 수 있다. 종래의 오토 미션은 클러치 디스크의 슬립을 기초로 한 소형차량 및 개인용 RV 차량 위주로 사용되고 있으나, 본 연구 기술은 대형 차량부터 소형 승용차 및 농기계, 선박 등 클러치를 조작하는 모든 수송 기계에 적용이 가능한 혁신적인 기술이다. 차량의 운전 조건에 따라 달라지는 엔진의 출력 값에 따라, 클러치 디스크의 접속 시점을 정확히 결정하고 수동 변속기의 경우 빈번히 나타나는 반 클러치 상태를 적용하기 위하여, 클러치 디스크의 접속 시점을 결정하는 기준이 되는 데이터로 엔진(Engine)의 회전수(rpm)를 적용한다. 상승하는 엔진 회전수에 해당하는 값 만큼만 클러치 디스크를 이동, 접속시켜 차량의 동력을 원활하게 전달할 수 있는 자동차용 전자식 클러치 모듈을 연구하였다.

  • PDF

CATV망을 위한 자동화 장치구현 사례 연구 (A Study on the Implementation of Automatic Device for CATV Network)

  • 곽윤식
    • 한국정보통신학회논문지
    • /
    • 제7권4호
    • /
    • pp.623-629
    • /
    • 2003
  • 본 논문은 CATV 망 관련 장치 구현에 관한 것으로 기존의 수동형 장치의 비효율성을 제거하기 위해 자동화된 집중식 Headend 시스템 및 분배장치를 구현하였다. 이를 위해 기존의 주파수대역 중에서 비디오 신호의 송신에 사용되지 않은 대역을 확보하고 이를 제어신호의 송ㆍ수신이 이루어지는 제어대역으로 사용하는 송수신 시스템 및 자동화 분배기를 설계하였으며, 상ㆍ하향통신 및 하향통신방식이 공유된 형태로 RS-232를 이용한 9600bps의 CATV 망을 위한 통합관리 시스템을 구현하였다.

TCU 제어로직 평가를 위한 AMT 모델 개발 (Development of Automated Mechanical Transmission Model to Evaluate TCU Control Logic)

  • 오주영;송창섭
    • 한국정밀공학회지
    • /
    • 제27권3호
    • /
    • pp.118-126
    • /
    • 2010
  • The automated mechanical transmission(AMT) is composed of electronic control management(ECM) and automatic shift gear(ASG). The AMT has advantages which are high efficiency of manual transmissions(MT) and offer operation convenience similar to automatic transmissions(AT). However, it has defects that are the torque gap during gear shift transients and shift time is long. To reduce such defects, it is necessary practically to evaluate error and characteristics as developing simulation model before the control algorithm is applied. In this paper, models are composed of vehicle model and AMT shift control model. Particularly AMT shift control model consists of main clutch management model (MCM) and shift control management model(SCM). The developed models were verified by comparing the simulated and experimental results under the same operational conditions. It can also be used to evaluate shift algorithm.

자동변속기용 임베디드 시스템 성능 시험을 위한 Hardware-in-the Loop 시뮬레이터 구축 (Development of Hardware-in-the-Loop Simulator for Testing Embedded System of Automatic Transmission)

  • 장인규;서인근;전재욱;황성호
    • 제어로봇시스템학회논문지
    • /
    • 제14권3호
    • /
    • pp.301-306
    • /
    • 2008
  • Drivers are becoming more fatigued and uncomfortable with increase in traffic density, and this condition can lead to slower reaction time. Consequently, they may face the danger of traffic accidents due to their inability to cope with frequent gear shifting. To reduce this risk, some drivers prefer automatic transmission (AT) over manual transmission (MT). The AT offers more superior drivability and less shifting shock than the MT; therefore, the AT market share has been increasing. The AT is controlled by an electronic control unit (ECU), which provides better shifting performance. The transmission control unit (TCU) is a higher-value-added product, so the companies that have advanced technologies end to evade technology transfer. With more cars gradually using the ECU, the TCU is expected to be faster and more efficient for organic communication and arithmetic processing between the control systems than the l6-bit controller. In this paper, the model of an automatic transmission vehicle using MATLAB/Simulink is developed for the Hardware in-the-Loop (HIL) simulation with a 32-bit embedded system, and also the AT control logic for shifting is developed by using MATLAB/Simulink. The developed AT control logic, transformed automatically by real time workshop toolbox, is loaded to a 32-bit embedded system platform based on Freescale's MPC565. With both vehicle model and 32-bit embedded system platform, we make the HIL simulation system and HIL simulation of AT based on real time operating system (RTOS) is performed. According to the simulation results, the developed HIL simulator will be used for the performance test of embedded system for AT with low cost and effort.

트랙터의 기관속도(機關速度) 및 변속비(變速比)의 자동제어(自動制御)에 관(關)한 연구(硏究)(I) -기관속도(機關速度) 및 변속비(變速比) 제어(制御) 시스템- (Automatic Control of Engine Speed and Transmission Ratio for Efficient Tractor Operations(I) -Control Systems for Engine Speed and Transmission Ratio-)

  • 강성봉;류관희;오길근
    • Journal of Biosystems Engineering
    • /
    • 제18권4호
    • /
    • pp.305-316
    • /
    • 1993
  • Fuel efficiency in tractor operations dep6nds on the selection of transmission gears and upon the engine being operated at or near maximum torque much of time. The objective of this study was to develop automatic control systems for tractor transmission ratio and governor setting so that the engine is operated at or near maximum torque as much of time as possible. An indoor test unit, which can be used to simulate tractor operation, was built in order to investigate the system design parameters and test the performance of the control system designed. The test-unit consists of engine, gear-type transmission, dynamometer, and control systems for transmission ratio and engine speed. Governor setting lever was controlled by a step motor, and the clutch and transmission levers were controlled by hydraulic cylinders and solenoid valves. The control systems showed good time responses which are assumed to be suitable for optimal tractor operation. The time required for shifting gears from clutch disengagement to engagement was about 1 second, which is almost the same as that for manual shift. And the settling time for engine speed control system was about 5 to 6 seconds.

  • PDF

자동변속기장착 차량의 Shift-By-Wire 시스템 개발 (Development of Shift-By-Wire System for an Automatic Transmission Equipped Vehicle)

  • 김정윤;임충혁;임원식
    • 한국자동차공학회논문집
    • /
    • 제15권4호
    • /
    • pp.41-46
    • /
    • 2007
  • This article deals with the design and prototyping of Shift-By-Wire system for an automatic transmission equipped vehicle. In order to manipulate the shifting action electronically, Shift-By-Wire system consists of an electronic shift lever, an electric shift actuator and position sensors. The shift lever is designed to transform the driver's shifting command into an electric signal; it includes the position sensor using non-contact type hall sensor and an additional shifting switch acting as Tip-tronic. For the design of an electric shifting actuator, we investigated the stroke angles and shifting efforts of the manual control lever in each shifting section. And the position sensor of the shifting actuator is designed by using a potentiometer with an optical encoder. Finally the prototype of Shift-By-Wire system was built in a conventional 2.4L class SUV vehicle, and we performed road tests in order to verify its performance.

지게차용 동력전달장치의 조립라인 전용시험기 개발 (Development of the Assembly Line Tester of Power Transmission for Lift Truck)

  • 장경열;유우식
    • 산업공학
    • /
    • 제23권1호
    • /
    • pp.58-67
    • /
    • 2010
  • The purpose of this paper is to present the development processes of the assembly line tester of power transmission for lift truck. Because power transmission is most important part of lift truck, all assembled powertrain parts must be inspected for operational defects, pressures and RPM. Developed assembly line tester is designed to take about 25 minutes for inspecting each assembled power transmission and located it at the end of assembled line. The assembly line no-load tester consists of three parts: (1) the driving hardware part; for installing and operating the transmission. (2) control PCB part; send data from sensors to a computer and control driving part, (3) operation software of no-load tester; for an automatic inspection or manual inspection, for database management and printing transcripts.

지능형 수면다원 진단 시스템 개발 (Development of Intelligent Polysomnographic Diagnosis System)

  • 박광석;한주만;박해정;정도언
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1997년도 춘계학술대회
    • /
    • pp.199-202
    • /
    • 1997
  • We are developing computer integrated polysomnography system. This system integrates conventional polysomnography with computer for data management, automatic analysis, scoring, and data transmission. In the first stage, we have developed the signal interface and user interface for the manual scoring and data management. For the automatic scoring of sleep stage, we have developed the protocol and have applied the analytic method in its primitive form. In the second stage we will develope a partially automatic scoring system, and finalize the fully automatic system in the final third stage.

  • PDF

트랙터의 전후진 자동 변속을 위한 전자식 액추에이터의 위치 제어 시스템 개발 (Development of Electric Actuator Position Control System for Automatic Shuttle Shifting of Tractor)

  • 최창현;우미나;이대현;김용주;정진희
    • Journal of Biosystems Engineering
    • /
    • 제35권4호
    • /
    • pp.224-230
    • /
    • 2010
  • The purpose of this study was to develop position control system of an electric actuator for automatic shuttle shifting of a tractor. The electric actuator was installed at the link of the forward-reverse gearshift of the tractor transmission, and controlled in the ranges of forward, neutral, and reverse positions. The position control system of the electric actuator was developed based on PID (Proportional Integral Derivative) controller and transfer function of the electric actuator. The coefficients of the PID controller were determined by Ziegler-Nichols (Z-N) method and optimized using simulation program. The prototype AMT (Automated Manual Transmission) test unit of the tractor was installed and used to evaluate the performance of the position control. The evaluation system for the control performance consisted of forward-reverse actuator, motor driver, and controller. The tests were conducted as the controlled positions of the actuator were changed from neutral position to forward, neutral, and reverse positions in sequence. The sequential tests were repeated 20 times. The operations of changing the gearshift were considered as the step response of the control system. Maximum overshoot, settling time, and steady-state error were analyzed. The results showed that performance of the position control system was reasonable and qualified. The maximum overshoots, the steady-state errors, and the settling times of the position control system were 10~20%, 1~5%, and 0.92~1.49 sec, respectively. The modifications of the electric actuator will be required to enhance the performance of position control during field operation.