• Title/Summary/Keyword: Automatic Level Control

Search Result 314, Processing Time 0.108 seconds

Development and Performance of Automated Calibration System of Sound Level Meters (소음계 교정 자동화 시스템 개발 및 성능평가)

  • 김용태;조문재;이용봉;서재갑
    • Journal of KSNVE
    • /
    • v.8 no.5
    • /
    • pp.879-886
    • /
    • 1998
  • An automated calibration system of sound level meters was developed and tested. As a standard sound source, the speaker unit(Forstex FE208) cabineted by 440$\times$390$\times$490 $\textrm{mm}^3$(LHW) volume wood box was adopted. Including this source, the driving part was found out to have a good linearity of sound pressure output vs AC voltage input. The Hybrid-Bisect/Newton-Raphson method modified by the linearity was adopted as a searching algorithm. Uisng GPIB interface, the console PC make the control, measurements, and calculations and finally make the accumulation of useful data and results automatically by the instructon in the program coded by C languate. Several trials of automatic calibration using this developed system give the reliable results.

  • PDF

Monitoring of Cleanliness Level in Hydraulic Systems: Obtaining Reliable On-Line data

  • Hong, Jeong-Hee;Day, Mike
    • Journal of Drive and Control
    • /
    • v.9 no.2
    • /
    • pp.28-38
    • /
    • 2012
  • Monitoring of system cleanliness levels and counting of particulate contaminant are fundamental to achieving hydraulic system reliability as any departure from the specified cleanliness level is often a precursor to future failures. On-line monitoring of cleanliness levels has the advantage of giving data both very quickly and accurately as environmental influences are eliminated. In this way, corrective actions can be promptly implemented. Most on-line instruments are sensitive to system conditions to a greater or lesser extent, but Automatic Particle Counters (APCs) working on light extinction principles are especially sensitive to the presence of optical interfaces caused by such conditions as fluid mixtures, emulsions, free water and air bubbles. These conditions give erroneous data and can result in drawing incorrect conclusions, wasting maintenance time and ultimately, reduced user confidence in cleanliness monitoring. This paper describes such conditions and shows how the correct selection of the analysis technique can result in reliable cleanliness level data.

Real-time evaluation of automatic production quality control for friction welding machine (摩擦熔接機械 의 自動생산品質制御 實時間 評價)

  • 오세규;임우조;김형자
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.6
    • /
    • pp.757-766
    • /
    • 1985
  • Both in-process quality control and high reliability of the weld is one of the major concerns in applying friction welding to the economical and qualified mass-production. No reliable nondestructive monitoring method is available at present to determine the real-time evaluation of automatic production quality control for friction welding machine. This paper, so that, presents the experimental examinations and statistical quantitative analysis of the correlation between the initial cumulative counts of acoustic emission(AE) occurring during plastic deformation period of the welding and the tensile strength of the welded joints as well as the various welding variables, as a new approach which attempts finally to develop an on-line (or real-time) quality monitoring system and a program for the process of real-time friction welding quality evaluation by initial AE cumulative counts. As one of the important results, it was well confirmed that the initial AE cumulative counts were quantitatively and cubically correlated with reliability of 95% confidence level to the joint strength of the welds, bar-to-bar (SCM4 to SUM31, SCM4 to SUM24L) and that an AE technique using initial AE counts can be reliably applied to real-time strength evaluation of the welded joints, and that such a program of the system was well developed resulting in practical possibility of real-time quality control more than 100% joint efficiency showing good weld with no micro-structural defects.

FAULT DETECTION COVERAGE QUANTIFICATION OF AUTOMATIC TEST FUNCTIONS OF DIGITAL I&C SYSTEM IN NPPS

  • Choi, Jong-Gyun;Lee, Seung-Jun;Kang, Hyun-Gook;Hur, Seop;Lee, Young-Jun;Jang, Seung-Cheol
    • Nuclear Engineering and Technology
    • /
    • v.44 no.4
    • /
    • pp.421-428
    • /
    • 2012
  • Analog instrument and control systems in nuclear power plants have recently been replaced with digital systems for safer and more efficient operation. Digital instrument and control systems have adopted various fault-tolerant techniques that help the system correctly and safely perform the specific required functions regardless of the presence of faults. Each fault-tolerant technique has a different inspection period, from real-time monitoring to monthly testing. The range covered by each faulttolerant technique is also different. The digital instrument and control system, therefore, adopts multiple barriers consisting of various fault-tolerant techniques to increase the total fault detection coverage. Even though these fault-tolerant techniques are adopted to ensure and improve the safety of a system, their effects on the system safety have not yet been properly considered in most probabilistic safety analysis models. Therefore, it is necessary to develop an evaluation method that can describe these features of digital instrument and control systems. Several issues must be considered in the fault coverage estimation of a digital instrument and control system, and two of these are addressed in this work. The first is to quantify the fault coverage of each fault-tolerant technique implemented in the system, and the second is to exclude the duplicated effect of fault-tolerant techniques implemented simultaneously at each level of the system's hierarchy, as a fault occurring in a system might be detected by one or more fault-tolerant techniques. For this work, a fault injection experiment was used to obtain the exact relations between faults and multiple barriers of faulttolerant techniques. This experiment was applied to a bistable processor of a reactor protection system.

Development of a Rapid Control Prototyping Platform for Engine Control System (엔진 제어시스템을 위한 래피드 콘트롤 프로토타이핑 플랫폼에 관한 연구)

  • 송정현;이우택;선우명호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.160-165
    • /
    • 2003
  • The design and implementation of an engine control system has become an important area in developing a new car, but the implementation of an engine control system is becoming a tedious and time-consuming work as the level of complexity increases. In order to shorten the development cycle of the control system, rapid control prototyping (RCP) technique deserves developers' attention. A new RCP platform has been developed for an automotive engine control application. This prototyping system strictly adheres to the layered architecture of the final production ECU, and separates the automatically generated part of software, or the application area, from the hand coded area, which generally carefully designed and tested because of the hardware dependency and the efficiency of microcontroller. The $Matlab{\circledR}$ tool-chain of Mathworks Inc. has been selected as a base environment in this study. A newly developed Engine Control Toolbox of Real-Time $Workshop{\circledR}$ converts a graphically represented control algorithm into optimized application codes and links them with other parts of the software to generate executable code for the target processor.

The Effect of Body Mass Index on Entrance Surface Air Kerma in Abdominal X-ray Radiography Using Automatic Exposure Control (자동노출제어를 이용한 복부 일반 X선 검사에서 체질량지수가 입사표면공기커마에 미치는 영향)

  • Koo, No-Hyun;Yoon, Hee-Soo;Choi, Kwan-Woo;Lee, Jong-Eun;Kim, Jeong-Jin
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.5
    • /
    • pp.659-667
    • /
    • 2018
  • The purpose of this study was to determine the effect of body mass index (BMI) on entrance surface air kerma (ESAK) in abdominal X-ray radiography using automatic exposure control (AEC). This study included 321 patients who underwent abdominal X-ray using AEC, and we correlated ESAK with height, weight, BMI and compared mean ESAK according to BMI grades (Underweight, Normal, Overweight, Obese 1, Obese 2). As a result, Weight ($R^2=0.777$, p<.001) and BMI ($R^2=0.835$, p<.001) were positively associated with ESAK, but no significant association was found between height ($R^2=0.075$, p<.001) and ESAK. The mean ESAK with respect to BMI grades showed statistically significant difference and in the post-hoc analysis, the existence of 5 subgroups at the significance level of 0.05 indicated that there were differences in the ESAK in all BMI grades. Also, as the increment of ESAK between two neighboring BMI grades increases from Underweight to Obese 2, the exposure dose dramatically increased as the BMI increased. Thus, an excessive exposure dose due to increasing BMI when using AEC should be acknowledged and Efforts to reduce dose should be taken, such as: by fixing the exposure conditions.

Evaluating efficiency of automatic surface irrigation for soybean production

  • Jung, Ki-yuol;Lee, Sang-hun;Chun, Hyen-chung;Choi, Young-dae;Kang, Hang-won
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.252-252
    • /
    • 2017
  • Nowadays water shortage is becoming one of the biggest problems in the Korea. Many different methods are developed for conservation of water. Soil water management has become the most indispensable factor for augmenting the crop productivity especially on soybean (Glycine max L.) because of their high susceptibility to both water stress and water logging at various growth stages. The farmers have been using irrigation techniques through manual control which farmers irrigate lands at regular intervals. Automatic irrigation systems are convenient, especially for those who need to travel. If automatic irrigation systems are installed and programmed properly, they can even save you money and help in water conservation. Automatic irrigation systems can be programmed to provide automatic irrigation to the plants which helps in saving money and water and to discharge more precise amounts of water in a targeted area, which promotes water conservation. The objective of this study was to determine the possible effect of automatic irrigation systems based on soil moisture on soybean growth. This experiment was conducted on an upland field with sandy loam soils in Department of Southern Area Crop, NICS, RDA. The study had three different irrigation methods; sprinkle irrigation (SI), surface drip irrigation (SDI) and fountain irrigation (FI). SI was installed at spacing of $7{\times}7m$ and $1.8m^3/hr$ as square for per irrigation plot, a lateral pipe of SDI was laid down to 1.2 m row spacing with $2.3L\;h^{-1}$ discharge rate, the distance between laterals was 20 cm spacing between drippers and FI was laid down in 3m interval as square for per irrigation plot. Soybean (Daewon) cultivar was sown in the June $20^{th}$, 2016, planted in 2 rows of apart in 1.2 m wide rows and distance between hills was 20 cm. All agronomic practices were done as the recommended cultivation. This automatic irrigation system had valves to turn irrigation on/off easily by automated controller, solenoids and moisture sensor which were set the reference level as available soil moisture levels of 30% at 10cm depth. The efficiency of applied irrigation was obtained by dividing the total water stored in the effective root zone to the applied irrigation water. Results showed that seasonal applied irrigation water amounts were $60.4ton\;10a^{-1}$ (SI), $47.3ton\;10a^{-1}$ (SDI) and $92.6 ton\;10a^{-1}$ (FI), respectively. The most significant advantage of SDI system was that water was supplied near the root zone of plants drip by drip. This system saved a large quantity of water by 27.5% and 95.6% compared to SI, FI system. The average soybean yield was significantly affected by different irrigation methods. The soybean yield by different irrigation methods were $309.7kg\;10a^{-1}$ from SDI $282.2kg\;10a^{-1}$ from SI, $289.4kg\;10a^{-1}$ from FI, and $206.3kg\;10a^{-1}$ from control, respectively. SDI resulted in increase of soybean yield by 50.1%, 7.0% 9.8% compared to non-irrigation (control), FI and SI, respectively. Therefore, the automatic irrigation system supplied water only when the soil moisture in the soil went below the reference. Due to the direct transfer of water to the roots water conservation took place and also helped to maintain the moisture to soil ratio at the root zone constant. Thus the system is efficient and compatible to changing environment. The automatic irrigation system provides with several benefits and can operate with less manpower. In conclusion, improving automatic irrigation system can contribute greatly to reducing production costs of crops and making the industry more competitive and sustainable.

  • PDF

Implementation of PNP on the Control Board using Hardware/Software Co-design

  • Kim, Si-hwan;Lin, Chi-ho;Kim, Hi-seok
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.305-308
    • /
    • 2002
  • This paper proposes a control board that includes PNP function with extensibility and effective allocation of allocation. The object of study is to overcome limited extensity of old systems and it is to reuse the system. The system recognizes automatic subsystem from application of main system with board level that is using hardware and software co-design method. The system has both function of main-board and sub-board. So one system can operate simultaneously such as module of alien system. This system has advantages that are fast execution, according as process functional partition to hardware/ software co-design and board size is reduced as well as offer extensity of development system. We obtained good result with control board for existent Z-80 training kit.

  • PDF

A Delay-Dependent Approach to Robust Filtering for LPV Systems with Discrete and Distributed Delays using PPDQ Functions

  • Karimi Hamid Reza;Lohmann Boris;Buskens Christof
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.2
    • /
    • pp.170-183
    • /
    • 2007
  • This paper presents a delay-dependent approach to robust filtering for linear parameter-varying (LPV) systems with discrete and distributed time-invariant delays in the states and outputs. It is assumed that the state-space matrices affinely depend on parameters that are measurable in real-time. Some new parameter-dependent delay-dependent stability conditions are established in terms of linear matrix inequalities (LMIs) such that the filtering process remains asymptotically stable and satisfies a prescribed $H_{\infty}$ performance level. Using polynomially parameter-dependent quadratic (PPDQ) functions and some Lagrange multiplier matrices, we establish the parameter-independent delay-dependent conditions with high precision under which the desired robust $H_{\infty}$ filters exist and derive the explicit expression of these filters. A numerical example is provided to demonstrate the validity of the proposed design approach.

Development of Transportational Guide System for Joining Small Wire with Gabion (개비온 끝단 소둔선 결합용 이송 가이드 장치 개발 연구)

  • Lee J.K.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.51-52
    • /
    • 2006
  • Gabion can be used for the purpose of preventing overflow of river and side loss of road. However the manufacturing process of the gabion is manually controlled especially to the joining process at the terminal part of gabion with small diameter wire. In this paper automatic feeding guide system was designed and fabricated to make automation. The fabricated system was tested in the factory level. Pneumatic system was considered as the main idea of the feeding system. 3/2-way and 5/2-way manual control valve, eight double-acting cylinders were used. Based on the theoretical simulation and actual test the fabricated system was well controlled. The system was applied to the patent.

  • PDF