• Title/Summary/Keyword: Automatic Feature Extraction

Search Result 249, Processing Time 0.025 seconds

A New Temporal Filtering Method for Improved Automatic Lipreading (향상된 자동 독순을 위한 새로운 시간영역 필터링 기법)

  • Lee, Jong-Seok;Park, Cheol-Hoon
    • The KIPS Transactions:PartB
    • /
    • v.15B no.2
    • /
    • pp.123-130
    • /
    • 2008
  • Automatic lipreading is to recognize speech by observing the movement of a speaker's lips. It has received attention recently as a method of complementing performance degradation of acoustic speech recognition in acoustically noisy environments. One of the important issues in automatic lipreading is to define and extract salient features from the recorded images. In this paper, we propose a feature extraction method by using a new filtering technique for obtaining improved recognition performance. The proposed method eliminates frequency components which are too slow or too fast compared to the relevant speech information by applying a band-pass filter to the temporal trajectory of each pixel in the images containing the lip region and, then, features are extracted by principal component analysis. We show that the proposed method produces improved performance in both clean and visually noisy conditions via speaker-independent recognition experiments.

A Study on Face Component Extraction for Automatic Generation of Personal Avatar (개인아바타 자동 생성을 위한 얼굴 구성요소의 추출에 관한 연구)

  • Choi Jae Young;Hwang Seung Ho;Yang Young Kyu;Whangbo Taeg Ken
    • Journal of Internet Computing and Services
    • /
    • v.6 no.4
    • /
    • pp.93-102
    • /
    • 2005
  • In Recent times, Netizens have frequently use virtual character 'Avatar' schemes in order to present their own identity, there is a strong need for avatars to resemble the user. This paper proposes an extraction technique for facial region and features that are used in generating the avatar automatically. For extraction of facial feature component, the method uses ACM and edge information. Also, in the extraction process of facial region, the proposed method reduces the effect of lights and poor image quality on low resolution pictures. this is achieved by using the variation of facial area size which is employed for external energy of ACM. Our experiments show that the success rate of extracting facial regions is $92{\%}$ and accuracy rate of extracting facial feature components is $83.4{\%}$, our results provide good evidence that the suggested method can extract the facial regions and features accurately, moreover this technique can be used in the process of handling features according to the pattern parts of automatic avatar generation system in the near future.

  • PDF

A Feature Selection Technique for an Efficient Document Automatic Classification (효율적인 문서 자동 분류를 위한 대표 색인어 추출 기법)

  • 김지숙;김영지;문현정;우용태
    • The Journal of Information Technology and Database
    • /
    • v.8 no.1
    • /
    • pp.117-128
    • /
    • 2001
  • Recently there are many researches of text mining to find interesting patterns or association rules from mass textual documents. However, the words extracted from informal documents are tend to be irregular and there are too many general words, so if we use pre-exist method, we would have difficulty in retrieving knowledge information effectively. In this paper, we propose a new feature extraction method to classify mass documents using association rule based on unsupervised learning technique. In experiment, we show the efficiency of suggested method by extracting features and classifying of documents.

  • PDF

Real-Time Automatic Tracking of Facial Feature (얼굴 특징 실시간 자동 추적)

  • 박호식;배철수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.6
    • /
    • pp.1182-1187
    • /
    • 2004
  • Robust, real-time, fully automatic tracking of facial features is required for many computer vision and graphics applications. In this paper, we describe a fully automatic system that tracks eyes and eyebrows in real time. The pupils are tracked using the red eye effect by an infrared sensitive camera equipped with infrared LEDs. Templates are used to parameterize the facial features. For each new frame, the pupil coordinates are used to extract cropped images of eyes and eyebrows. The template parameters are recovered by PCA analysis on these extracted images using a PCA basis, which was constructed during the training phase with some example images. The system runs at 30 fps and requires no manual initialization or calibration. The system is shown to work well on sequences with considerable head motions and occlusions.

Speech Query Recognition for Tamil Language Using Wavelet and Wavelet Packets

  • Iswarya, P.;Radha, V.
    • Journal of Information Processing Systems
    • /
    • v.13 no.5
    • /
    • pp.1135-1148
    • /
    • 2017
  • Speech recognition is one of the fascinating fields in the area of Computer science. Accuracy of speech recognition system may reduce due to the presence of noise present in speech signal. Therefore noise removal is an essential step in Automatic Speech Recognition (ASR) system and this paper proposes a new technique called combined thresholding for noise removal. Feature extraction is process of converting acoustic signal into most valuable set of parameters. This paper also concentrates on improving Mel Frequency Cepstral Coefficients (MFCC) features by introducing Discrete Wavelet Packet Transform (DWPT) in the place of Discrete Fourier Transformation (DFT) block to provide an efficient signal analysis. The feature vector is varied in size, for choosing the correct length of feature vector Self Organizing Map (SOM) is used. As a single classifier does not provide enough accuracy, so this research proposes an Ensemble Support Vector Machine (ESVM) classifier where the fixed length feature vector from SOM is given as input, termed as ESVM_SOM. The experimental results showed that the proposed methods provide better results than the existing methods.

(Automatic detection of pulmonary nodules in X-ray chest images) (흉부 X선 영상에서의 폐 노쥴 자동 탐지 기법)

  • Sung, Won;Kim, Eui-Jung;Park, Jong-Won
    • Journal of the Korea Computer Industry Society
    • /
    • v.3 no.9
    • /
    • pp.1279-1286
    • /
    • 2002
  • Generally, radiologists can fail to detect pulmonary nodules in up to 30%. If an automatic system can inform the radiologists of thelocations of the doubtful nodules in the X-ray chest images, the frequency of mistakenly observed numbers of the nodules can be potentially reduced. This software is using morphological filtering and two feature-extraction techniques. The morphological filtering is the first process, which subsequently adds the operations of erosion and dilation to the original images so that this process can transform the original X-ray chest images into manageable ones. The false-positives are frequently being mistaken as nodules but actually these are not real nodules. The second process is the two feature-extraction techniques which are used to reduce the false-positives. Therefore, this system will make more effective detection of pulmonary nodules by reducing the false-positives when applied to the X-ray chest images which is difficult to get accurate detection.

  • PDF

Feature Vector Extraction Method for Transient Sonar Signals Using PR-QMF Wavelet Transform (PR-QMF Wavelet Transform을 이용한 천이 수중 신호의 특징벡타 추출 기법)

  • Jung, Yong-Min;Choi, Jong-Ho;Cho, Yong-Soo;Oh, Won-Tcheon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.87-92
    • /
    • 1996
  • Transient signals in underwater show several characterisrics, that is, short duration, strong nonstationarity, various types of transient sources, which make it difficult to analyze and classify transient signals. In this paper, the feature vector extraction method for transient SOMAR signals is discussed by applying digital signal processing methods to the analysis of transient signals. A feature vector extraction methods using wavelet transform, which enable us to obtain better recognition rate than automatic classification using the classical method, are proposed. It is confirmed by simulation that the proposed method using wavelet transform performs better than the classical method even with smaller number of feature vectors. Especially, the feature vector extraction method using PR-QMF wavelet transform with the Daubechies coefficients is shown to perform well in noisy environment with easy implementation.

  • PDF

Evaluation of Volumetric Texture Features for Computerized Cell Nuclei Grading

  • Kim, Tae-Yun;Choi, Hyun-Ju;Choi, Heung-Kook
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.12
    • /
    • pp.1635-1648
    • /
    • 2008
  • The extraction of important features in cancer cell image analysis is a key process in grading renal cell carcinoma. In this study, we applied three-dimensional (3D) texture feature extraction methods to cell nuclei images and evaluated the validity of them for computerized cell nuclei grading. Individual images of 2,423 cell nuclei were extracted from 80 renal cell carcinomas (RCCs) using confocal laser scanning microscopy (CLSM). First, we applied the 3D texture mapping method to render the volume of entire tissue sections. Then, we determined the chromatin texture quantitatively by calculating 3D gray-level co-occurrence matrices (3D GLCM) and 3D run length matrices (3D GLRLM). Finally, to demonstrate the suitability of 3D texture features for grading, we performed a discriminant analysis. In addition, we conducted a principal component analysis to obtain optimized texture features. Automatic grading of cell nuclei using 3D texture features had an accuracy of 78.30%. Combining 3D textural and 3D morphological features improved the accuracy to 82.19%. As a comparative study, we also performed a stepwise feature selection. Using the 4 optimized features, we could obtain more improved accuracy of 84.32%. Three dimensional texture features have potential for use as fundamental elements in developing a new nuclear grading system with accurate diagnosis and predicting prognosis.

  • PDF

Feature Extraction of Non-proliferative Diabetic Retinopathy Using Faster R-CNN and Automatic Severity Classification System Using Random Forest Method

  • Jung, Younghoon;Kim, Daewon
    • Journal of Information Processing Systems
    • /
    • v.18 no.5
    • /
    • pp.599-613
    • /
    • 2022
  • Non-proliferative diabetic retinopathy is a representative complication of diabetic patients and is known to be a major cause of impaired vision and blindness. There has been ongoing research on automatic detection of diabetic retinopathy, however, there is also a growing need for research on an automatic severity classification system. This study proposes an automatic detection system for pathological symptoms of diabetic retinopathy such as microaneurysms, retinal hemorrhage, and hard exudate by applying the Faster R-CNN technique. An automatic severity classification system was devised by training and testing a Random Forest classifier based on the data obtained through preprocessing of detected features. An experiment of classifying 228 test fundus images with the proposed classification system showed 97.8% accuracy.

Accurate Parked Vehicle Detection using GMM-based 3D Vehicle Model in Complex Urban Environments (가우시안 혼합모델 기반 3차원 차량 모델을 이용한 복잡한 도시환경에서의 정확한 주차 차량 검출 방법)

  • Cho, Younggun;Roh, Hyun Chul;Chung, Myung Jin
    • The Journal of Korea Robotics Society
    • /
    • v.10 no.1
    • /
    • pp.33-41
    • /
    • 2015
  • Recent developments in robotics and intelligent vehicle area, bring interests of people in an autonomous driving ability and advanced driving assistance system. Especially fully automatic parking ability is one of the key issues of intelligent vehicles, and accurate parked vehicles detection is essential for this issue. In previous researches, many types of sensors are used for detecting vehicles, 2D LiDAR is popular since it offers accurate range information without preprocessing. The L shape feature is most popular 2D feature for vehicle detection, however it has an ambiguity on different objects such as building, bushes and this occurs misdetection problem. Therefore we propose the accurate vehicle detection method by using a 3D complete vehicle model in 3D point clouds acquired from front inclined 2D LiDAR. The proposed method is decomposed into two steps: vehicle candidate extraction, vehicle detection. By combination of L shape feature and point clouds segmentation, we extract the objects which are highly related to vehicles and apply 3D model to detect vehicles accurately. The method guarantees high detection performance and gives plentiful information for autonomous parking. To evaluate the method, we use various parking situation in complex urban scene data. Experimental results shows the qualitative and quantitative performance efficiently.