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Evaluation of Volumetric Texture Features for
Computerized Cell Nuclei Grading
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ABSTRACT

The extraction of important features in cancer cell image analysis is a key process in grading renal
cell carcinoma. In this study, we applied three-dimensional (3D) texture feature extraction methods to
cell nuclei images and evaluated the validity of them for computerized cell nuclei grading. Individual
images of 2,423 cell nuclei were extracted from 80 renal cell carcinomas (RCCs) using confocal laser
scanning microscopy (CLSM). First, we applied the 3D texture mapping method to render the volume
of entire tissue sections. Then, we determined the chromatin texture quantitatively by calculating 3D
gray-level co-occurrence matrices (3D GLCM) and 3D run length matrices (3D GLRLM). Finally, to
demonstrate the suitability of 3D texture features for grading, we performed a discriminant analysis.
In addition, we conducted a principal component analysis to obtain optimized texture features. Automatic
grading of cell nuclei using 3D texture features had an accuracy of 78.30%. Combining 3D textural and
3D morphological features improved the accuracy to 82.19%. As a comparative study, we also performed
a stepwise feature selection. Using the 4 optimized features, we could obtain more improved accuracy
of 84.329. Three dimensional texture features have potential for use as fundamental elements in develop-
ing a new nuclear grading system with accurate diagnosis and predicting prognosis.
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inter- and intra—observer variation, regardless of
any grading system.

Several studies have examined and defined vari-
ous texture features, such as the internal structure
of cells (granularity and regularity of chromatin),
size irregularity, shape of the nucleus, and distance
between nuclei, which are important for determin-
ing the progress of cancer[1-6]. Histology-based
statistical analyses of textural features are gen-
erally based on the gray level of cell nuclei, while
the structural analysis method describes the prop-
erties and placement of texture -elements.
Nevertheless, most two~dimensional (2D) texture
feature based analysis systems still have low ob-
jectivity and reproducibility. Given the variety of
analysis methods, no clear measurement standard
has been established for extracting accurate nu-
merical information. Similarly, the image analysis
systems based on 2D images have several intrinsic
limitations, For example, cells and cell nuclei are
not perfectly spherical, and consequently, their
shape differs noticeably according to the cutting
angle and thickness of the sample tissues.
Ultimately, it is difficult to confirm the shape of
a cell. Another drawback of conventional 2D
slice-based approaches is that they are tedious, fa-
tiguing, and time-consuming. To guarantee re-
producibility, a new method based on three-dimen—
sional (3D) image analysis is required.

Recently, some papers have reported various 3D
texture features. Jafari-Khouzani et al. suggested
an analysis method based on a comparative study
of 2D and 3D wave let features[7]. Madhabushi et
al. studied the automatic segmentation of high-
resolution magnetic resonance (MR) images using
a 3D Gabor filter and a co-occurrence matrix[8].
Kuran and Xu applied a 3D gray-level co-occur—
rence matrix (GLCM) and a 3D gray-level run
length method (GLRLM) to computed tomography
(CT) images to separate various organs of the hu-
man body[9-10]. Most of these approaches were
simply extended from conventional 2D methods,

but the importance of 3D texture increases with
its successful expansion.

This study checks the validity of 3D GLCM and
3D GLRLM, which were studied by Kuran and Xy,
by applying them to the images of cell nuclei for
RCC (Renal Cell Carcinoma) obtained by CLSM.
The previous study examined the correlation be-
tween the changing grade following the cancer
process and the 3D morphological features and also
investigated the 2IJ features that can be a good
proxy for estimating 3D features, while mainly fo-
cusing on the morphological changes of the nu-
cleus(11-12]1. In contrast to the previous study
about the external changes of the nucleus, this
study focuses on the delicate changes in chromatin
pattern inside the nucleus.

In what follows, Section 2 describes the research
method along with the details of obtaining the im-
ages used in the experiment. Section 3 and Section
4 present the experiment and study results from
the application of the method described in Section
2 to the actual image data. Finally, Section 5 con—
tains concluding remarks evaluating the results of
the study as well as suggesting a direction for fur-
ther studies.

2. MATERIAL AND METHODS

2.1 Image Acquisition

We obtained eight classes of RCC tissue from
the Department of Pathology, Yonsei University,
Korea. They had been fixed in 10% neutral-buf-
fered formalin and embedded in paraffin before
receipt. The tissues were cut into 20-um sections,
stained with propidium iodide (PI} containing
RNase A at a final concentration 0.5 mg/mL, and
mounted in fluorescent mounting medium (DAKQO,
Carpinteria, CA, USA). The RCC tissues were im-
aged under a TCS SP2 AOBS confocal laser scan—
ning microscope (Leica Microsystems, Mannheim,
Germany), with a 630x, 2x zoom, 1.4 NA HEX
PL-Apochromat objective lens, and a HeNe laser.
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A series of 2D optical sections, 0.4-um apart, were
acquired, starting above the top surface of the sec-
tion and extending down to the bottom surface. We
obtained 100-130 slices for each volumetric data
set, and each slice was a 24-bits/pixel image with
a resolution of 256 * 256 pixels,

2.2 Volume Rendering

To extract 3D texture features from volume data
and inspect the entire shape of cell nuclei, we im-
plemented a volume rendering module using
OpenGL® Shading Language (GLSL)[13-14]. We
apphed direct volume rendering methods based on
3D texture mapping. This method proved to be
very suitable for visualizing the 3D scalar field.
The basic concept of the 3D-texture mapping ap—
proach is to use the scalar field as a 3D texture.
At the core of the algorithm, multiple equidistant
planes (slices) parallel to the image plane are clip-
ped against the bounding box of the volume.
During rasterization, hardware is used to inter-
polate 3D~texture coordinates at the polygon verti-
ces and to reconstruct the texture samples using
trilinear interpolation within the volume. Finally,
the 3D representation is produced by successive
blending of the textured polygons back-to-front
onto the viewing plane, Since this process uses the
blending and interpolation capabilities of the un-
derlying hardware, the time taken to generate an
image is negligible compared to software-based
approaches. As an advantage of this approach, in~
teractive frame rates are achieved, even if applied
to high-resolution scalar fields.

We also used the graphical processor unit-based
3D slicing technigue to reduce the computation cost
on the CPU. This method consists of two compo—
nents © a vertex shader, which manages plane ob-
jects that should be clipped on the GLSL and a
fragment shader, which determines the values of
the color buffers to be displayed. Unlike the con-
ventional equation calculated from viewing ma-

trices, vertices, and boundaries that define the tex~

ture space, it uses only the rotation transform ma-
trices as mput values. Consequently, we can easily

reduce computational costs.

2.3 2D and 3D Texture feature extraction

Computer-aided image analysis provides more
objective numerical information compared to visual
analysis by humans, which is one of the merits of
digital image analysis. The 3D texture analysis,
which has been commonly used on the clinical data
in a number of recent studies, was employed for
quantification, which was subsequently analyzed
to see whether it can be used as a feature for
classification. In order to compare the valdity of
the extracted features, several types of statistical
classifiers were created using 3D texture feature
and 2D feature and the classification results among

them were subsequently compared.

2.3.1 Spatial relationship in 2D and 3D

The difference of spatial position of two image
elements (pixels and voxels) can be described by
a displacement vector. In 2D, for a certain distance
D, there are 8 neighboring pairs independent direc-
tions corresponding to ¢=0°,45",90",135" .

In volumetric data, the displacement vectors still
can be decomposed into a norm~1 distance D and
a direction which can be specified by azimuth ¢
and zenith 0. there are totally 26 neighboring vox-—
el-pairs in 13 independent directions.

As like this, the difference between 2D and 3D
data for calculating GLCM and GLRLM lie in the

Fig. 1. Spatial relationship in 2D and 3D: (a) 2D
(b)3D
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displacement vectors.

2.3.2 Feature calculation

Generally, 2D texture features are computed us-
ing pixels from each slice. However, if we process
3D volume data as individual 2D slices, some in-
ter-slice information is ignored, increasing the

possibility of data loss. To resolve such problems,

VOL. 11, NO. 12, DECEMBER 2008

we applied the concept of 3D texture features.
Despite the simplicity of extending conventional
matrix—-based algorithms to three dimensions, this
approach gave a noticeable result. The 2D GLCM
considers the spatial dependency of pixels on one
slice, while 3D GLCM quantifies the 3D depend-
ency of voxel data on the object volume, which ex-

ists across several slices. Similar to the case for

Table 1. The list of GLCM and GLRLM texture feature

Gray Level Co—occurrence Matrix(GLCM)
Angular Second Moment ASM= Z]ZP(Z’-J’)2 2D, 3D
Contrast CONT= -_ (l 7) 221) i.5) 2D, 3D
Second Order Difference Moment SDM = EZ}(i—j)Zp (i.) 2D, 3D
t 3
First Order Difference Moment FDM= 333 3(i—3)p(,5) 2D, 3D
v 7
Second Order Inverse Difference Moment SIDM= Egﬁp(u ) 2D, 3D
Second Order Diagonal Moment SDIAGM = JUBF(G=1)p(i.j) 2D, 3D
Entropy ENTR=— EZp(i,j)*log(p(i,j)) 2D, 3D
Correlation corp— yy (T (u) 2D, 3D
Peak Transition Probability PTP=maz (p(i,5)) 2D
Uniformity UNI= Y )3 n(i,5) 2D, 3D
T 7
Gray Level Co-occurrence Matrix(GLRLM)
M N P
Short Run Emphasis SRE= %lelﬂﬁfﬂ 3D
ri=1j
N
Long Run Emphasis LRE= ZZP (6,507 3D
Ny {=15=1
Low Gray Level Run Emphasis LGRE= TZIEM 3D
1
High Gray Level Run Emphasis HGRE= —ZIZI:D(%J)* 3D
bri=1j
M N
Short Run Low Gray Level Emphasis smLGE= - ngi&ﬂ 3D
- E1
Short Run High Gray Level Emphasis SRHGE= — 2;2 3D
by =1
M N - 2
Long Run Low Gray Level Emphasis LRLGE= —1'22% 3D
S
M N
Long Run Iligh Gray Level Emphasis LRHGE= %ZEI)(%J)*L“’*JZ 3D
ri=1i=1
M N 2
Gray Level Non-uniformity GLNU *LZ(ZP(LJ)) 3D
Run Length Non-uniformity RLNU= Z[ZP (4, J)J 3D
> RPC = L :
Run Percentage 2G) 3 3D
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two dimensions, co-occurrence matrices for vol-
ume data also represent an n*n matrix in which
n is the gray level. These matrices are defined us—
ing the specific displacement vector disp = (dx, dy,
dz) for each direction, where dx, dy, and dz are
the number of voxels that move along the x-, y-,
and z-axis, respectively. With respect to each pix-
el, pixels in 26 directions can be examined, but only
13 directions were considered to avoid redundancy.
From the calculated matrices, we extracted nine 3D
texture features.

The basic concept used for expanding 3D
GLRLM is very similar to that for 3D GLCM. Each

component pli, j] of matrix p indicates the number

of runs that have a gray-level value of {, and the
length of the runs j in specific orientations. The
size of matrix p can as expressed by mxk, where
m and k are the maximum gray level and the length
of the maximum run, respectively. From the calcu—
lated matrices, we extracted eleven 3D GLRLM
texture features.

To confirm the validity of the 3D texture fea—
tures, we also needed comparable classifier models.
For this purpose, we selected four feature groups
and extracted 25 2D features from 2D section data
sets[15-17]. Table 1 and 2 list the entire 2D and
3D features that used for our validation.

Mayall/Young chromatin features are extracted

Table 2. The list of Mavyall/Young chromatin, densitometric, and morphometric features

Mayall/Young Chromatin texture
. Nt Ny
Heterogeneity HETERO = ——"2—” 2D
weshdif f
Clumpness CLUMP= e 2D
Nyt Ny
Condensation CONDENS= —————;W% MW,‘ D
Np+ N+ Nw
Densitometric
Gray Level Average AVG= 71\7 MNSwlig) 2D
? 7
Gray Level Variance VAE:%\,ZZ(P(LI/)*/U: 2D
Gray Level Standard Deviation $TD= VAR 2D
. . 1 .. i .
Kurtosis KUTO=—== ZZ (pg)—mn) D
Skewness SKEW=2 VY pif) — 1) 2D
g 7
Cluster Shade CS=(i+j—wi—uj)p(i.j) 2D
Cluster Prominence CP=(i+ j—ui~uj)plij) 2D
Coeff. of Variance V= 5;#*“’“ 2D
Morphomteric
Area ARFA= E (Fixels of Object) 2D
Perimeter The length of the outside boun dary of the selection 2D
Feret’s Diameter The l(mggst distance between two points along D
the selection boundary
Circularity CIR = d7t{ Area/Perimeter?) 2D

(A : Sum Area, Nz © Number of Black Pixel, Nw : Number of White Pixel, N; : Number of Gray Pixels, >, meshdiff
Number of differing pixels between white and black pixels in a check—board meshed tessellation of given width




1640 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 11, NO. 12, DECEMBER 2008

from the 3-level image considering the global
shape of the object. Three values regarding the ex-
tent of the condensation of chromatin used in the
study include Theterogeneity, clump, and
condensation. B and W indicate the number of the
white and black pixels, respectively, in each nu-
cleus area. M, the size of mesh, was fixed at 8 pixel
in this study. Ns, Ng, and Nw indicate the number
of pixels that have a value of black, gray, and
white, respectively, in each mesh area.

Heterogeneity of parameters is not sensitive to
the distribution of condensed and non-condensed
area. However, it emphasizes the difference be-
tween condensed and non-condensed chromatin
area. For example, the parameter value becomes
zero if the nucleus has a single homogeneous value
at gray level, while the value becomes one in a
completely heterogeneous gray level. Moreover,
among the parameters regarding the granularity,
such as the clump and condensation, the former is
sensitive to the absolute size of the particles in
nucleus. The low value indicates small size of the
particle, and the particle smaller than the size of
the mesh has a value close to zero. The latter in-
dicates the ratio of the large particles to the total
nucleus area.

Densitometric features are commonly used in
image analysis and include various features, most
of which are computed using statistical methods.
In this study, a total of 8 densitometric features
were used.

Morphometric features such as the size of the
object, shape, and locations can be estimated using
the geometrical features. Similar to the densito-
metric features, the features in this group have
been commonly used as significant features for
long. Since the area containing the normal or ab-
normal cells shows particular geometrical forms in
histopathological images, such morphological fea-
tures can be more useful than the statistical fea-
tures in that the latter is more sensitive to the var-
iance of the data.

2.4 Statistical Analysis

To verify the effectiveness of the 3D texture
features, we performed a quantitative analysis in—

- volving the comparative study of several grading

classifiers. Qur test used 419, 430, 785, and 789 cell
nuclei objects for grades 1 to 4, respectively. The
20 3D texture features were extracted from each
of the 2,423 cell nuclel. First, we reduced the di-
mensionality of the features through a principal
component analysis (PCA){18-19]. Based on the
result of this analysis, a total of five principal com-
ponents were selected. Then, we used these five
principal components as new features with the lin—
ear combination of each eigenvector and the origi-
nal extracted feature values.

As the next step, we applied a discriminant
analysis. We used a pre-performed training proc-
ess to improve the correctness of the classification
by using 100 training data sets that had heen se-
lected randomly from each grade. The rest of the
nuclei data were used for the test. The correct
classification rates using the 400 training data sets
were 72, 87, 54, and 94% for grades 1 to 4,
respectively. Finally, we created six classifiers
(named A-F) and tested the correctness of
grading. Table Il shows the detailed specifications

of each classifier.

Table 3. Specifications of the six classifiers

Classifier Specifications

25 2D texture features without any stat—

A .
istical process

B 25 2D texture features with PCA

C 20 3D texture features with PCA

20 3D texture features without any stat—

D .

istical process

20 3D texture features and 3 3D morpho—
E logical features without any statistical

process

F The classifier E with PCA
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Classifiers E and F combined the 3D texture fea-
tures with 3D morphological features (Volume,
Surface Area, and Spherical shape Factor). As not-
ed previously, the morphological characteristics of
cell nuclel are still considered important factors for
clinical grading. Moreover, in order to examine the
discriminant power in classification of Grade 2 and
Grade 3, which are known to be clinically difficult,
the value of area under receiver operating curve
(AUC) was investigated[20-21].

Finally, as a comparative study, we performed
stepwise features selection to select another opti-
mized features. Using the selected these features,
we also inspect misclassification rate for each
grade by statistical analysis in the same way[22).

Consequently, we expected to reduce the error
rate of grading through these combinations. All
statistical evaluations were made using the SAS

program package (SAS Institute, Cary NC, USA).
3. RESULTS

A system with an Intel® Pentium® 3.0 GHz pro-
cessor and the Nvidia GeForce™ 6300XT graphics
card was used for software implementation and the
performance test. The software tool used for
measuring 23 of the 3D features was newly im-
plemented using Microsoft Visual c++® 60
(Microsoft, Redmond, WA, USA), OpenGL® li-
brary, and GLSL (OpenGL® Shading Language).
The 20 2D features were measured using IMAN,
an image analyzer developed at the Medical Image

Technology Laboratory (MITL) of Inje University.

3.1 Volume visualization based on 3D texture
mapping

Figure 2 shows an example of volume rendering.
We also applied pseudo~color mapping to the vol-
ume object to improve the visibility of the cell
nuclei. Figure 3 provides an example showing our
volume visualization of cell nuclei for each grade.

For grade 1, we can easily see the small size and

Fig. 2. An example of a rendered sample: (a)
original gray-level and (b) pseudo-color
mapping

Fig. 3. Three-dimensional visualization of renal
cell carcinoma cell nuclei: grades (a) |, (b)
I, {¢) NI, and (&) IV

variation of cell shape. With progress from grade
2 to 3, the enlargement of cell nuclei 1is
recognizable. Grade 4 shows a more pronounced
impression of disorder, often with exireme
variation. However, many clinical cases exist in
which it is difficult to determine a grade based on
a visual inspection of geometrical or morphological
factors, such as the size of the cell nuclel
Therefore, the need for more objective, quantitative

information is growing.
3.2 Classification

3.2.1 Classifier A and B

After extracting 25 features defined earlier, a
principal components analysis is conducted to di-
minish the dimension of the features, Table 4 below
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Table 4. The explanatory adequacy of 6 principal
components

Eigenvalues of Correlation Matrix

Eigenvalue | Difference | Propotion [Cumulative
7.85685252 | 0.3347980 0.3022 0.3022
75220537 | 4.99617295 | 0.2893 0.5915
2.52588076 | 0.3578305 0.0971 0.6886
2.16859771 | 0.12961255 0.834 0.7721
1.03898515 | 0.09197585 | 0.0400 0.8120
0.94700930 0.0364 0.8484

DU [ W N =

presents an analysis result of the significant fea—
tures from each principal component. Among 6
principal components chosen as default values, five
principal components which explain about 81.20%
were selected and redefined as new features.
Accordingly, the eigenvectors were computed for
25 features and five new characteristic equations
were defined by a linear combination of these ei-
genvectors and each of the features. After the prin—
cipal components analysis, the validity of classi~
fication was checked by a discriminant analysis.

For a validity check, the result was compared
with the one from using all of the 25 extracted 2D
features without principal components analysis
procedure. Two classifiers used in 2D analysis was
named A and B were used for comparison between
classifiers in the subsequent steps. Table 5 and
Table 6 show the misclassification rate for each
grade in the data sets. Comparing the result from
using the five optimized features and the one using

Table 5. Misclassification rate of classifier A

Grade 1 2 3 4 Total
Rate | 0.6923 | 0.1875 | 0.7143 | 0.5000 | 0.5235
Priors | 0250 | 0.250 | 0.250 | 0.250

Table 6. Misclassification rate of classifier B

Grade 1 2 3 4 Total
Rate | 0.2308 } 0.1250 | 0.5714 | 0.0714 | 0.2497
Priors | 0250 | 0250 | 0250 | 0.250

all of the 25 2D features, the difference in the accu-

racy of classification is clear.

3.2.2 Classifier C

Similar to the procedure for the classifier A and
B, a principal components analysis was conducted
to reduce the dimension of the features. Five se-
lected principal components were then used as an
optimized input value through a linear combination
of the characteristic vector and the original
features. After selecting the principal components
and extracting the features, a discriminant analysis
was conducted on the test data to create a classifier
using the 3D feature. The classifier was created
using the five new features that were diminished
from 20 features and the function of the created
classifier was evaluated. First, the classification
rate for learning result using the 400 learning data
was 72.00%, 87.00%, 54.00%, and 94.00% for each
grade, with an average accuracy 76.75%. Applying
the 2,023 test data to the created classifier after the
learning completion, the classification accuracy for
each grade turned out to be 77.13%, 71.61%,
63.94%, and 95.94%, with an average accuracy rate
78.30%. Tahle 7 below presents the number of data
classified in each grade and the classification rate.
For example, among 319 data that were previously
categorized into Grade 1, only 72.73% of them, that

Table 7. Classification result for classifier C

Subj.G

4 Total

CompG 1 2 3 ota

1 232 5 61 21 319
(72.73) | (1.57) | (19.12) | (6.58) | (100.00)

9 19 266 1 44 330
(5.76) (80.61) | (0.30) |(13.33) | (100.00)

3 181 10 438 56 685
(26.42) | (1.46) | (63.94) | (8.18) | (100.00)

4 10 1 17 661 639
(1.45) | (0.15) | (2.47) | (95.94) | (100.00)

Total 442 282 517 782 2,023

(21.85) | (13.94) | (25.56) | (38.66) | (100.00)
Priors 0.25 0.25 0.25 0.25
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is, only 232 are correctly classified into Grade 1 ac-
cording to the results from applying the classifier.
Besides, five data, approximately 1.57%, were mis-
classified into Grade 2.

3.2.3 Classifier D

Classifier D is created using the 20 3D features
as an input value without principal components
analysis. It uses the previously extracted features
without additional procedure. The classification
accuracy was the lowest among the six classifiers,
with an accuracy rate for each grade with the
learning data 61.00%, 59.00%6, 57.00%, and 50.00%,
making the average accuracy rate 56.75%. The ac-
curacy rate with test data was 4545%, 34.24%,
43.36%, and 33.67%. With an average accuracy as
low as 39.18%, the classifier turned out to be

problematic.

3.2.4 Classifier E

Classifier E was created by adding three fea-
tures of volume, surface area, and spherical shape
factor to the twenty 3D features used in classifier
D, and hence has both texture and morphological
properties. The validity of those three features was
already checked in a previous study that examines
new grading system by a comparison analysis be-
tween morphological 3D features and2D features.
These additional features play an important role in
determining the grade in the actual clinical
diagnosis.

After extracting three additional features for each
object, the 23 features were used as an input value
without the principal components analysis, similar
to the procedure of classifier D. The accuracy rate
with the learning data was 57.00%, 58.00%6, 56.00%,
and 51.00%, with an average accuracy 55.50%. The
accuracy rate with test data was 44.83%, 37.58%,
41.29%, and 35.27%, with an average accuracy
39.49%6, which is only 0.31% higher than that of the
classifier D. Since the validity of the three morpho—

logical features was already checked, the overall

classification accuracy was expected to be sig-
nificantly improved. Nevertheless, the overall rate

was similar to that of the classifier D.

3.2.5 Classifier FF

Finally, classifier F is a modified type of classi-
fier D. Classifier F uses 23 features used in classi-
fier D as an input value and selects optimal five
features through the principal components analysis
which are subsequently used in the actual
classification. The classification accuracy for the
learning data was 94.0096, 89.00%, 75.00%, and
82.00%, with an average accuracy 82.50%. The
classification accuracy for the test data was
91.22%, 86.45%, 76.50%, and 75.18%6, with an aver-
age accuracy 82.19%. This is the best result among
the six classifiers. Compared to the classifier C,
even though the increase in accuracy was small
with approximately 4.00%, it showed a stable ac—
curacy with an even increase in every grade. This
result indicates that the morphological analysis is
an important factor in determining the
classification. Combining the 3D texture used in
this study with the morphological elements will
provide a strong possibility for developing a supe-—
rior classification system based on the 3D feature.
Table 8 summarizes the results of applying classi-
fier F to the test data.

Table 8. Classification result for classifier F

Subj.G

1 2 3 4 Total
CompG
] 291 0 27 1 319
(91.22) 1 (0.00) | (846) | (0.31) | (100.00)
9 2 282 5 41 330
(0.61) | (85.45) | (1.52) | (12.42) | (100.00)
3 161 0 524 0 685

(23.50) | (0.00) | (76.50) | (0.00) | (100.00)

3 164 4 518 689
(0.44) | (23.80) | (0.58) | (75.18) | (100.00)

457 446 560 560 2,023
(22.59) | (22.05) | (27.68) | (27.68) | (100.00)

Priors 0.25 0.25 0.25 0.25

Total




1644 JOURNAL OF KOREA MULTIMEDIA SOCIETY, VOL. 11, NO. 12, DECEMBER 2008

3.2.6 Area under receiver operating curve analysis

Additionally, in order to find the discriminant
power of the 3D texture feature for Grade 2 and
Grade 3 images, 10 random sets were chosen
whose area under receiver operating curve (AUC)
was investigated. The nuclei in each dataset were
categorized into Grade 2 and Grade 3 beforehand
inside each set according to the properties of the
nucleus through a visual inspection by the clinical
diagnosis experts.

In general, the features that have discriminant
power have AUC values between 05 and 1.0.
Those with AUC>0.8 are considered to have a su-
perior discriminant power. The table below pres-
ents the results of 10 dataset used in the test.

Some features showed a consistent discriminant
power for each of the different dataset. Among the
twenty features, entropy (ENTR) has the best dis-
criminant power with the AUC larger than 0.5 for
all data sets, followed by long run low gray level
emphasis (LGRLE), second order inverse differ-
ence moment (SIDM), and second order diagonal
moment (SDIAGM). Among the twenty features,
about eight features turned out to have validity for
Grade 2 and Grade 3, on average. In the table, the
values that have high discriminant power with
AUC higher than 0.8 is highlighted.

3.2.7 Classification after stepwise after selection

Finally, as an another approach, we performed

Table 9. AUC value table for 20 3D texture features

3D Feators #Set| 2 | 3| 4|5 | 6| 7|8 |9 |10 Agg>
ASM 0.426 | 0.396 | 0.432 | 0.601 | 0.543 | 0.433 | 0.598 | 0.353 | 0.245 | 0.455 3
CONT 0455 | 0.513 | 0.667 | 0.479 | 0.494 | 0.367 | 0.456 | 0.312 | 0.433 | 0.470 2
SDM 0.399 | 0.432 { 0.325 | 0.435 | 0.462 | 0.411 | 0.501 | 0.467 | 0.333 | 0.251 1
FDM 0.300 | 0531 | 0.398 | 0.487 | 0.349 | 0.444 | 0.547 | 0.673 | 0.349 | 0.513 3
SIDM 0.426 | 0.500 | 0.477 | 0.662 | 0577 | 0.672 | 0552 | 0.778 | 0.319 | 0.554 7
SDIAGM 0.761 | 0.828 | 0.940 | 0.782 | 0.841 | 0.452 | 0.864 | 0.345 | 0.303 | 0.742 7
ENTR 0.835 0.669 | 0.851 | 0.754 | 0.812 | 0.532 [ 0.901 | 0.668 | 0.786 | 0.735 ; 10
UNI 0.385 | 0435 | 0.386 | 0.411 | 0573 | 0.298 | 0.377 | 0551 | 0.441 | 0.373 2
CORR 0.544 | 0.647 | 0.615 | 0.511 | 0.455 | 0.413 | 0.455 | 0.627 | 0.295 | 0.359 5
SRE 0.326 | 0.219 | 0.400 | 0.298 | 0.434 | 0.313 | 0.391 | 0.435 | 0.231 | 0.268 0
LRE 0.377 | 0.676 | 0.454 | 0.741 | 0.812 | 0.475 | 0.550 | 0.451 | 0.300 | 0.738 5
LGRE 0.783 | 0.891 | 0.642 | 0.677 | 0.903 | 0.412 | 0523 | 0.742 | 0512 | 0.834| 9
HGRE 0.404 | 0.448 | 0.344 | 0.333 | 0.424 | 0.383 | 0.556. | 0.341 | 0.272 | 0.452 1
SRHGE 0.686 | 0.549 | 0.556 | 0.431 | 0.613 | 0.414 | 0.647 | 0.406 | 0.319 | 0.499 5
SRLGE 0.587 | 0.453 | 0.666 | 0.564 | 0.448 | 0.452 | 0.454 | 0.563 | 0.400 | 0.342 4
LRHGE 0.448 | 0.643 | 0.418 | 0.325 | 0.431 | 0.339 | 0.462 | 0.489 | 0.345 | 0.377 1
LRLGE 0.485 | 0521 | 0.555 | 0.411 | 0.385 | 0.546 | 0.477 { 0544 | 0.237 | 0.416 4
GLNU 0451 | 0434 | 0.319 | 0676 | 0.364 | 0370 | 0.358 | 0.338 | 0.398 | 0.327 1
RLNU 0439 | 0.374 | 0.402 | 0.323 | 0.315 | 0.331 | 0.301 | 0674 | 0.474 | 0.345 1
RP 0.713 | 0.832 | 0.695 | 0672 | 0.784 | 0.398 | 0.762 | 0.590 | 0.349 | 0.460 4
#AUC>05 7 12 9 10 9 3 11 10 2 6 total
#Number of grade 2 nuclei 24 23 18 8 16 17 22 15 13 11 167
#Number of grade 3 nucle 15 9 7 24 18 21 18 9 14 23 158
#T'otal number of nuclei 39 32 25 32 34 38 40 24 27 34 325




Evaluation of Volumetric Texture Features for Computerized Cell Nuclei Grading 1645

Table 10. Stepwise selection result

step| Entered | F-Val. | Pr>F 11\;“];;; Pli;z\géis ’
1 | LGRE 924564 | <0001 | 0.29587 | <.0001
2 ) ENTR | 36237 | <0001 0.10875 ; <.0001
3 | SRHGE | 4563 | <0001 | 0.09231 <0001
UNI 10471 | <0001 | 0.07409 | <0001

stepwise features selection process with 20 3D
texture features. From this process, we obtained
4 optimized features. Table 10 represent the final
result of stepwise selection. Using these 4 features
we performed a statistical classification in the
same way and classification result was compared
with others. The classification accuracy for the test
data was 89.34%, 84.28%, 79.49%, and 84.16%, with

an average accuracy 84.32%.
4. DISCUSSION

Figure 4 presents the classification accuracy of
the six classifiers for each grade. When the opti-
mized features were used from the PCA results,
our classifier based on the 3D features generally
showed a higher rate. In contrast, when the original
feature values were used for classification, the
rates were lower.

Nevertheless, using the optimized principal
components as new features, the results showed
relatively stable rates for each grade. When we
compared the average rate between classifiers B
and C, classifier C (78.30%) gave better results
than B (75.13%). Comparing these two classifiers,
except for grade 2, our new classifier C gave high-
er, more stable results overall. A more reliable re-
sult was obtained with the classifier I, which com-
bined textural and morphological features. This
gave the best result (82.19%), verifying the im~
portance of morphological characteristics in clinical
diagnosis. As for classifier F, its importance was
confirmed in a previous study that tried the combi-

nation between morphological features, which is

Classification Rases for RCC G1~64

Chusifier

Fig. 4. Comparison of classification performance
using six different classifiers

considered as the most important factor in actual
clinical experiences. As was predicted, the accu-
racy was the highest with the rate slightly above
80.002. This result opens a possibility for an alter—
native method that can improve the accuracy in
classification by combining the optimized 3D tex-
ture features and 3D morphological features.

In the case of Grade 2 and Grade 3, which are
known to be most difficult to classify in actual
clinical experiences, the accuracy fluctuated from
one classifier to another. When optimized prineipal
components were used as feature, the classification
rate turned out to be stable in each grade.
Meanwhile, the misclassification rate of Grade 1
and Grade 4, which is relatively easy due to appa-
rent characteristics, was turned out to be higher
than that of Grade 2 and Grade 3. This probably
has played a role in decreasing the overall classi-
fication rate. Following the cause analysis result,
the problem in the composition of the learning data
and optimization of the data are assumed to be the
reason lying behind the low rate. It is surmised that
the learning was not sufficient due to a relatively
small size of extracted learning data for each group
compared to the other studies. Considering the
wide range of the actual extracted features accord-
ing to the properties of the features, it would be
beneficial to use some stereotype data.

When AUC was marginally conducted on a very
small portion of the Grade 2 and Grade 3 data, a

few features revealed consistently high discrim-
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inant power.

Nevertheless, only half of the features turned out
to have modest discriminant power with their
overall AUC above 0.5 in each dataset. An im-
provement of accuracy for Grade 2 and Grade 3
is critical in enhancing the overall accuracy of the
classification, and therefore a number of supple-
mental studies should be followed.

From the stepwise selection approach, we also
could obtain more improved result. Compared with
the classifier F, classification accuracy for grad 1
and 2 were lower, however the deviation for each
grade were reduced and we could obtained most
stable result. Figure 5 represents comparative per-
formance result between the classifier F and the
classifier using 4 stepwise selected features.

The 3D GLCM and GLRLM that were used in
this study to extract the 3D feature are the ex-
tensions of the GLCM and GLRLM, which are tra—
ditional methods that are most commonly used in
2D texture analysis. Recently, a variety of method-
ologies regarding the extraction of 2D feature have
been suggested. Hence, it is also necessary to con-
sider the extension of these methods to three-
dimension. Sufficient researches and data collec—
tion are also required to maintain the safety and
robustness of the classifier. In addition to the stat-
istical approach such as discriminant analysis used
in this study, new research approach with an appli-
cation of various recent classification models such

as neural network, Fuzzy, SVM, etc. can also be

Classification Rates for RCC G1-G4

Rates

i Optimized 80.34 84.28 T4 $4.16
i Classifier F "2 8645 wE %38

Fig. 5. Comparison of classification performance
between the classifier F and the classifier
using 4 stepwise selected features.

considered in the future studies in order to improve
the accuracy of classification, which is the most

important factor in considering the classifiers.

5. CONCLUSIONS

In this study, the image of cell nuclei for RCC
obtained by CLSM was reconstructed into volume
data and was subsequently visualized through 3D
surface rendering. After the newly defined 3D tex-
ture features were extracted, new classifiers were
created whose accuracy was compared with that
of the classifier which uses the previous 2D
feature. The validity was checked using 3D fea-
tures in diverse forms.

According to the statistical treatment and anal-
ysis results, the accuracy has improved compared
to the previous classification rate based on the 2D
feature. Moreover, through a continuous study in
the future, a further improvement in accuracy is
expected by combining the 3D texture features
with other 3D features such as the carcass features
and refining them. This study provides a founda-
tion for creating a new classification system with
superior function in future studies.

The new classification method, which uses the
morphological analysis through the 3D visual-
ization and quantified 3D texture information, is
expected to overcome the limitations of the pre-
vious system based on the 2D image analysis. It
can be used as a research tool that can contribute
to reducing misdiagnosis of RCC (Renal Cell

Carcinoma).
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