• Title/Summary/Keyword: Automatic Driving

Search Result 356, Processing Time 0.028 seconds

Flexible Multi-body Dynamic Analysis for Reducer-integrated Motor of Autofilter (오토필터의 감속기 일체형 모터에 관한 유연 다물체 동역학 해석)

  • J.K. Kim;B.D. Kim;G.S. Lee
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.5
    • /
    • pp.311-317
    • /
    • 2023
  • An autofilter is a device that removes impurities contained in heavy fuel oil used in diesel engines of ships or power plants, and also automatically removes impurities accumulated in the filter through a reverse washing function. The reducer-integrated motor serves to rotate the filter at low speed to enable reverse automatic cleaning in the autofilter device. To achieve a low speed of 0.65 to 0.75 rpm in a reducer-integrated motor, a small motor that can operate at 97rpm at a rated voltage of 110 V and 112.5 rpm at 220 V is required. Additionally, a large gear ratio of 1/150 is required. To ensure the durability and reliability of these reducers, the strength of the gear must be evaluated at the design stage. In general, there is a limit to evaluating the stress and strain state according to the vibration characteristics acting on each gear in the driving state of the reducer through quasi-static analysis. Therefore, in this study, the operation characteristics of the auto filter's reducer-integrated motor were first analyzed using the rigid body dynamics analysis method. Then, this rigid body dynamics analysis model was extended to a flexible multibody dynamics analysis model to analyze the stress and strain states acting on each gear and evaluate the design feasibility of the gear.

Implementation of Vehicle Location Identification and Image Verification System in Port (항만내 차량 위치인식 및 영상 확인 시스템 구현)

  • Lee, Ki-Wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.12
    • /
    • pp.201-208
    • /
    • 2009
  • As the ubiquitous environment is created, the latest ports introduce U-Port services in managing ports generally and embody container's location identification system, port terminal management system, and advanced information exchange system etc. In particular, the location identification system for freight cars and containers provide in real time the information on the location and condition for them, and enables them to cope with an efficient vehicle operation management and its related problems immediately. However, such a system is insufficient in effectively handling with the troubles in a large-scale port including freight car's disorderly driving, parking, stop, theft, damage, accident, trespassing and controlling. In order to solve these problems, this study structures the vehicle positioning system and the image verification system unsing high resolution image compression and AVE/H.264 store and transmission technology, able to mark and identify the vehicle location on the digital map while a freight car has stayed in a port since the entry of an automatic gate, or able to identify the place of accident through image remotely.

A Realization of CNN-based FPGA Chip for AI (Artificial Intelligence) Applications (합성곱 신경망 기반의 인공지능 FPGA 칩 구현)

  • Young Yun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.388-389
    • /
    • 2022
  • Recently, AI (Artificial Intelligence) has been applied to various technologies such as automatic driving, robot and smart communication. Currently, AI system is developed by software-based method using tensor flow, and GPU (Graphic Processing Unit) is employed for processing unit. However, if software-based method employing GPU is used for AI applications, there is a problem that we can not change the internal circuit of processing unit. In this method, if high-level jobs are required for AI system, we need high-performance GPU, therefore, we have to change GPU or graphic card to perform the jobs. In this work, we developed a CNN-based FPGA (Field Programmable Gate Array) chip to solve this problem.

  • PDF

Development of Convergence LED Streetlight and Speed Bump Using Solar Cell and Piezoelectric Element (태양광과 압전소자를 이용한 융복합 LED 발광 과속방지턱 겸용 가로등 개발)

  • Nahm, Eui-Seok;Cho, Han-Jin
    • Journal of Digital Convergence
    • /
    • v.14 no.5
    • /
    • pp.325-331
    • /
    • 2016
  • In driving at evening or night, we are not able to recognize the speed bump and so stop suddenly. It could result in accidents. And also, we have a restriction of street light installation in farm road because it could be harmful to the crops and driver could not recognize the walking people. It needs to develop the speed bump with light and streetlight to be non harmful to the crops. So, we develop both the speed bump and streetlight with LED which could be non harmful to the crops and be increased recognition of walking people in farm road. For LED lighting power, we use the solar cells, and piezoelectric elements. It has automatic on/off according to power saving rates without illumination sensor. Minimization of circuit elements and design of minimum resisters and low power LED was used for power saving in assuring 3-days.

Development and Evaluation of High Speed weigh-in-motion system (고속축하중측정시스템의 개발과 평가)

  • Kim, Ju-Hyun
    • International Journal of Highway Engineering
    • /
    • v.12 no.3
    • /
    • pp.17-26
    • /
    • 2010
  • Maintenance of the roads and bridges is a major issue for all road administrators around the world, and various initiatives are being implemented in each region for the purpose of controlling the ever increasing road maintenance cost while ensuring the safety of the vehicles driving. Efforts for such initiatives have also been made in Asia and initiatives for managing heavy-weight vehicles have recently gained momentum in Korea and Japan. We have developed a technology for unevenly installing bar-shaped sensors (piezo quartz sensors) to enable dynamic axle load measurement at a highly accurate level, and have estimated our measurement accuracy of axle load/gross weight, etc. on an actual road. The measurement accuracy of the axle load/gross weight varies significantly depending on the number of sensors installed. In our implementation, the target accuracy was set to below ${\pm}5%$ for gross weight measurement so that automatic regulation can be applied. We have achieved our target by installing 8-point measurement system. However, to have this technology widely accepted, it was necessary to reduce the system size so that it can be easily implemented. Therefore, we have estimated the relationship between the measurement accuracy and the system size (number of measurement points), and have come up with the proposal of 3-point measurement as an optimum number of measurement points, and have estimated its performance on an actual road. Additionally, we evaluated the relationship between the measurement accuracy and vehicle velocity.

Two-phases Hybrid Approaches and Partitioning Strategy to Solve Dynamic Commercial Fleet Management Problem Using Real-time Information (실시간 정보기반 동적 화물차량 운용문제의 2단계 하이브리드 해법과 Partitioning Strategy)

  • Kim, Yong-Jin
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.2 s.73
    • /
    • pp.145-154
    • /
    • 2004
  • The growing demand for customer-responsive, made-to-order manufacturing is stimulating the need for improved dynamic decision-making processes in commercial fleet operations. Moreover, the rapid growth of electronic commerce through the internet is also requiring advanced and precise real-time operation of vehicle fleets. Accompanying these demand side developments/pressures, the growing availability of technologies such as AVL(Automatic Vehicle Location) systems and continuous two-way communication devices is driving developments on the supply side. These technologies enable the dispatcher to identify the current location of trucks and to communicate with drivers in real time affording the carrier fleet dispatcher the opportunity to dynamically respond to changes in demand, driver and vehicle availability, as well as traffic network conditions. This research investigates key aspects of real time dynamic routing and scheduling problems in fleet operation particularly in a truckload pickup-and-delivery problem under various settings, in which information of stochastic demands is revealed on a continuous basis, i.e., as the scheduled routes are executed. The most promising solution strategies for dealing with this real-time problem are analyzed and integrated. Furthermore, this research develops. analyzes, and implements hybrid algorithms for solving them, which combine fast local heuristic approach with an optimization-based approach. In addition, various partitioning algorithms being able to deal with large fleet of vehicles are developed based on 'divided & conquer' technique. Simulation experiments are developed and conducted to evaluate the performance of these algorithms.

Implementation of Pattern Recognition Algorithm Using Line Scan Camera for Recognition of Path and Location of AGV (무인운반차(AGV)의 주행경로 및 위치인식을 위한 라인스캔카메라를 이용한 패턴인식 알고리즘 구현)

  • Kim, Soo Hyun;Lee, Hyung Gyu
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.23 no.1
    • /
    • pp.13-21
    • /
    • 2018
  • AGVS (Automated Guided Vehicle System) is a core technology of logistics automation which automatically moves specific objects or goods within a certain work space. Conventional AGVS generally requires the in-door localization system and each AGV equips expensive sensors such as laser, magnetic, inertial sensors for the route recognition and automatic navigation. thus the high installation cost is inevitable and there are many restrictions on route(path) modification or expansion. To address this issue, in this paper, we propose a cost-effective and scalable AGV based on a light-weight pattern recognition technique. The proposed pattern recognition technology not only enables autonomous driving by recognizing the route(path), but also provides a technique for figuring out the loc ation of AGV itself by recognizing the simple patterns(bar-code like) installed on the route. This significantly reduces the cost of implementing AGVS as well as benefiting from route modification and expansion. In order to verify the effectiveness of the proposed technique, we first implement a pattern recognition algorithm on a light-weight MCU(Micro Control Unit), and then verify the results by implementing an MCU_controlled AGV prototype.

Autonomous Mobile Robot System Using Adaptive Spatial Coordinates Detection Scheme based on Stereo Camera (스테레오 카메라 기반의 적응적인 공간좌표 검출 기법을 이용한 자율 이동로봇 시스템)

  • Ko Jung-Hwan;Kim Sung-Il;Kim Eun-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.1C
    • /
    • pp.26-35
    • /
    • 2006
  • In this paper, an automatic mobile robot system for a intelligent path planning using the detection scheme of the spatial coordinates based on stereo camera is proposed. In the proposed system, face area of a moving person is detected from a left image among the stereo image pairs by using the YCbCr color model and its center coordinates are computed by using the centroid method and then using these data, the stereo camera embedded on the mobile robot can be controlled for tracking the moving target in real-time. Moreover, using the disparity map obtained from the left and right images captured by the tracking-controlled stereo camera system and the perspective transformation between a 3-D scene and an image plane, depth information can be detected. Finally, based-on the analysis of these calculated coordinates, a mobile robot system is derived as a intelligent path planning and a estimation. From some experiments on robot driving with 240 frames of the stereo images, it is analyzed that error ratio between the calculated and measured values of the distance between the mobile robot and the objects, and relative distance between the other objects is found to be very low value of $2.19\%$ and $1.52\%$ on average, respectably.

Implementation of Analog Signal Processing ASIC for Vibratory Angular Velocity Detection Sensor (진동형 각속도 검출 센서를 위한 애널로그 신호처리 ASIC의 구현)

  • 김청월;이병렬;이상우;최준혁
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.4
    • /
    • pp.65-73
    • /
    • 2003
  • This paper presents the implementation of an analog signal-processing ASIS to detect an angular velocity signal from a vibrator angular velocity detection sensor. The output of the sensor to be charge appeared as the variation of the capacitance value in the structure of the sensor was detected using charge amplifiers and a self oscillation circuit for driving the sensor was implemented with a sinusoidal self oscillation circuit using the resonance characteristics of the sensor. Specially an automatic gain control circuit was utilized to prevent the deterioration of self-oscillation characteristics due to the external elements such as the characteristic variation of the sensor process and the temperature variation. The angular velocity signal, amplitude-mod)Hated in the operation characteristics of the sensor, was demodulated using a synchronous detection circuit. A switching multiplication circuit was used in the synchronous detection circuit to prevent the magnitude variation of detected signal caused by the amplitude variation of the carrier signal. The ASIC was designed and implemented using 0.5${\mu}{\textrm}{m}$ CMOS process. The chip size was 1.2mm x 1mm. In the experiment under the supply voltage of 3V, the ASIC consumed the supply current of 3.6mA and noise spectrum density from dc to 50Hz was in the range of -95 dBrms/√Hz and -100 dBrms/√Hz when the ASIC, coupled with the sensor, was in normal operation.

A Study on Total Mixed Ration Feeding System for Feeding Pigs (1) - Development of Monorail Traveling TMR Feeder for Grow-Finish Pigs -

  • Kim, Hyuck Joo;Yu, Byeong Kee;Hong, Jong Tae;Choi, Kyu Hong;Yu, Ji Su;Hong, Youngsin;Ha, Yu Shin
    • Journal of Biosystems Engineering
    • /
    • v.38 no.4
    • /
    • pp.295-305
    • /
    • 2013
  • Purpose: Recent research showed that total mixed ration (TMR) feeding for pigs improved the productivity and reduced feed cost and manure odor. An automatic TMR feeding system was developed for this study because the conventional feeder cannot deliver the TMR containing roughage. Methods: Conventional feeding systems and physical properties of TMR were surveyed, and performance tests of the conventional feeder were conducted to develop a TMR feeder. Based on the TMR feeder was developed and installed, driving, measuring weight, radio frequency identification (RFID) reading, and discharging test for feeding were conducted to ensure the performance. Results: Moisture content, density, and angle of repose of the TMR 1 (mixture of 30% cut IRG silage and 70% concentrates) were 31.6%, 387 $kg/m^3$, and $51^{\circ}$, respectively. Moisture content, density, and angle of repose of the TMR 2 (mixture of 45% concentrates, 30% cut IRG silage and by-products, 10% bean curd refuse, 10% others, and 5% fermenter) were 22.2%, 544 $kg/m^3$, and $50^{\circ}$, respectively. The coefficient of variation (C.V.) of conventional concentrate feeding were 1.9~4.1%, and C.V. of TMR containing 1~3% cut IRG roughage feeding by conventional feeder were 9~42%. The conventional disc type feeder was not suitable for TMR feeding because the supply unit was clogged. The C.V. of TMR 1 was 0.6~7.9% when 0.5~10 kg of the TMR supplied, and it was suitable for feeding grow-finish pigs and sows. On the contrary, the C.V. with TMR 2 was 28% when 0.5 kg of the TMR supplied, and it was not suitable for feeding sows. Conclusions: The TMR feeder developed in this study was suitable for feeding grow-finish pigs because the feeder performed stably with over 5.0 kg feed. However, the feeder showed a lack of accuracy for feeding sows because the amount of each feed was more than 0.5 kg per a feeding. Therefore, the improvement of outlet structure for accurate feeding is needed for sow feeding.